years

Relays, Interface Modules, Timers, Sockets and Accessories

Catalogue 2004-2005

(1)

The power in relays and timers since 1954

(17) finder

Fifty years ago, Piero Giordanino patented his first step relay and began the manufacture of electromechanical relays for use in home lighting installations. The move marked the very beginnings of his company - Finder - and in the 1960's the company started producing electromechanical relays for industrial applications.

Manufacturing Facilities

Our four factories produce over 220,000 relays every day, using machines which have been designed and built in-house by our own team of technicians, who are experts in their own right in production techniques and industrial automation.

Sales Network (1) finder

Saint-Jean de Maurienne - F

Fax-Back Form

FINDER S.p.A.
Via Drubiaglio, 14 10040 ALMESE (TORINO) - ITALY

Tel. +39 (0) 11934.62 .11
Fax +39 (0) 11935.90 .79
Export@findernet.com

For further information on the following, please complete and return:
Name: \qquad

Position: \qquad
Company: \qquad
Address: \qquad
Postcode: \qquad City: \qquad
E-mail: \qquad
Telephone: \qquad
Fax: \qquad
Finder customer:YES \square NO

I would like to receive:Price ListCatalogue on CD-Rom (includes DXF File for AUTOCAD R13)Sales Engineer to Visit

	$\begin{aligned} & 30 \text { Series.........................Page } 4 \\ & \text { Subminiature D.I.L. relays } \\ & 1.25 \mathrm{~A} \end{aligned}$		
	32 Series \qquad Page 6 Miniature P.C.B. relays $6 \mathrm{~A}$		56 Series.........................Page 60 Miniature power relays 12 A 96 Series.........................Page 66 Sockets and accessories
	34 Series. \qquad Page 10 Ultra-slim P.C.B. relays $0.1-2-6 \mathrm{~A}$ 93 Series. \qquad Page 15 Sockets and accessories		60 Series. \qquad Page 68 General purpose relays $10 \mathrm{~A}$ 90 Series. \qquad Page 73 Sockets and accessories
	36 Series. \qquad Page 18 Miniature relays 10 A		62 Series \qquad Page 78 Power relays $16 \mathrm{~A}$ 92 Series. \qquad Page 86 Sockets and accessories
	40 Series. \qquad Page 22 Miniature P.C.B. relays $8-10-16 \mathrm{~A}$ 95 Series. \qquad Page 29 Sockets and accessories		65 Series \qquad Page 88 Power relays $20-30 \mathrm{~A}$
	41 Series \qquad Page 32 Low-profile P.C.B. relays $8-12-16 A$ 95 Series. \qquad Page 35 Sockets and accessories		66 Series...........................Page 92 Power relays 30 A
	43 Series. \qquad Page 36 Low-profile P.C.B. relays 10 A 95 Series. \qquad Page 39 Sockets and accessories		19 Series. \qquad Page 96 Modular AUTO-OFF-ON relays 10 A
	44 Series. \qquad Page 40 Miniature P.C.B. relays $6.10 \mathrm{~A}$ 95 Series...........................Page 43 Sockets and accessories		38 Series. \qquad . Page 98 Relay interface module $0.1-2-6 \mathrm{~A}$
			48 Series \qquad Page 106 Relay interface modules $8-10-16 A$

58 Series.......................Page 112
Relay interface module
$7-10 \mathrm{~A}$

71 Series.........................Page 116
Monitoring relay
10 A

72 Series...........................Page 130
Level control relay
16 A

11 Series.........................Page 172
Modular light dependent
relays 16 A

- Sub miniature relay
- Low level switching capability
- Sensitive DC coil, 200 mW
- Wash tight: RT III

* For 250 V applications, where requirements for pollution degree 1 are met.

Contact specifications	
Contact configuration	2 CO (DPDT)
Rated current/Maximum peak current A	2/3
Rated voltage/Maximum switching voltage V AC	125/250*
Rated load in AC1 VA	125
Rated load in AC15 (230 V AC) VA	25
Single phase motor rating ($230 \mathrm{~V} \mathrm{AC)} \mathrm{~kW}$	-
Breaking capacity in DC1: 30/110/220 V A	2/0.3/-
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	10 (0.1/1)
Standard contact material	$\mathrm{AgNi}+\mathrm{Au}$
Coil specifications	
Nominal voltage (U_{N}) V AC (50/60 Hz)	-
V DC	5-6-9-12-24-48
Rated power AC/DC VA (50 Hz)/W	-/0.2
Operating range AC	-
DC	see table page 5
Holding voltage AC/DC	-/0.35 U ${ }_{\mathrm{N}}$
Must drop-out voltage AC/DC	-/0.05 U ${ }_{\mathrm{N}}$
Technical data	
Mechanical life AC/DC cycles	$-/ 10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$
Operate/release time ms	6/2
Insulation according to EN 61810-1 ed. 2	$1.2 \mathrm{kV} / 2$
Insulation between coil and contacts (1.2/50 $\mathrm{\mu s}$) kV	1.5
Dielectric strength between open contacts V AC	750
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$
Environmental protection	RT III
Approvals (according to type):	GOST ${ }_{c}{ }^{-1}{ }_{\text {US }}$

ORDERING INFORMATION

Example: a 30 series P.C.B. relay with 2 CO (DPDT) contacts, with coil rated at 12 V sensitive DC.

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	125
		rated impulse withstand voltage	kV
	1.2		
	pollution degree	2	
	VAC	1,500	I
Dielectric strength between adjacent contacts			

OTHER DATA

Bounce time: $\mathrm{NO} / \mathrm{NC}$	ms	$1 / 3$
Vibration resistance (10...55)Hz, max. $\pm 1 \mathrm{~mm}: \mathrm{NO} / \mathrm{NC}$	g / g	$10 / 10$
Power lost to the environment	without contact current	W
	0.2	
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5

CONTACT SPECIFICATIONS

Cycling capacity.
Note: the rated current of 2 A coincides with the limiting continuous current.

COIL SPECIFICATIONS

DC VERSION DATA (0.2 W sensitive)

Nominal voltage U_{N}	Coil code	Operating range		Resistance consumption R	Rated coil I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
5	7.005	3.7	7.5	125	40
6	7.006	4.5	9	180	33
9	7.009	6.7	13.5	405	22
12	7.012	8.4	18	720	16
24	7.024	16.8	36	2,880	8.3
48	7.048	36	72	11,520	4.1

R 30 DC

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

- Sensitive DC version
- Low profile
- NO (SPST-NO) version available
- Wash tight: RT III

32.21-x000
32.21-x300

	Copper side view	Copper side view
Contact specifications		
Contact configuration	1 CO (SPDT)	1 NO (SPST-NO)
Rated current/Maximum peak current A	6/15	6/15
Rated voltage/Maximum switching voltage V AC	250/400	250/400
Rated load in AC1 VA	1,500	1,500
Rated load in AC15 (230 V AC) VA	250	250
Single phase motor rating (230 V AC) kW	0.185	0.185
Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$	3/0.35/0.2	3/0.35/0.2
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (10/5)	500 (10/5)
Standard contact material	AgCdO	AgCdO
Coil specifications		
Nominal voltage (U_{N}) V AC (50/60 Hz)	-	-
V DC	5-12-24-48	5-12-24-48
Rated power AC/DC VA (50 Hz)/W	-/0.2	-/0.2
Operating range AC	-	-
DC	$(0.78 \ldots 1.5) \mathrm{U}_{\mathrm{N}}$	$(0.78 \ldots 1.5) U_{N}$
Holding voltage AC/DC	$-/ 0.4 U_{N}$	$-/ 0.4 U_{N}$
Must drop-out voltage AC/DC	$-/ 0.1 U_{N}$	$-/ 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/DC cycles	-/20 10^{6}	-/20 10^{6}
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	6/4	6/-
Insulation according to EN 61810-1 ed. 2	$4 \mathrm{kV} / 2$	$4 \mathrm{kV} / 2$
Insulation between coil and contacts (1.2/50 s) kV	5	5
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	$-40 \ldots+85$
Environmental protection	RT III	RT III
Approvals (according to type):	$\mathrm{c} \mathrm{JI}_{\mathrm{US}}^{\oplus} \quad \mathrm{VDE}$	

ORDERING INFORMATION

Example: a 32 series P.C.B. relay with 1 NO (SPDT-NO) contact 6 A , coil rated at 24 V sensitive DC.

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage V	250
	rated impulse withstand voltage kV	4
	pollution degree	2
	overvoltage category	III

OTHER DATA

Bounce time: NO/NC	ms	2/10 (for CO or SPDT)	2/- (for NO or SPST-NO)
Vibration resistance (10...55)Hz, max. $\pm 1 \mathrm{~mm}$: NO/NC	g / g	10/10 (for CO or SPDT)	10/- (for NO or SPST-NO)
Power lost to the environment without contact current	W	0.2	
with rated current	W	0.5	
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5	

CONTACT SPECIFICATIONS
F 32

Contact life vs ACI load.

COIL SPECIFICATIONS

DC VERSION DATA (0.2 W sensitive)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
V		V	V	Ω	mA
5	7.005	3.9	7.5	125	40
12	7.012	9.4	18	720	16
24	7.024	18.7	36	2,880	8.3
48	7.048	37.4	72	11,520	4

R 32 DC

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

34.51

- Ultra-slim, 5 mm wide
- Sensitive DC coil, 170 mW
- $6 / 8 \mathrm{~mm}$ clearance/creepage distance
$-6 k V(1.2 / 50 \mu s)$ between coil and contacts

* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications	
Contact configuration	1 CO (SPDT)
Rated current/Maximum peak current A	6/10
Rated voltage/Maximum switching voltage V AC	250/400*
Rated load in AC1 VA	1,500
Rated load in AC15 (230 V AC) VA	300
	0.185
Breaking capacity in DC1:30/110/220 V A	6/0.2/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	500 (12/10)
Standard contact material	AgNi
Coil specifications	
Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$	-
V DC	5-12-24-48-60
Rated power AC/DC VA (50 Hz)/W	-/0.17
Operating range AC	-
DC	$(0.7 \ldots 1.5) \mathrm{U}_{\mathrm{N}}$
Holding voltage AC/DC	-/0.4 U ${ }_{\mathrm{N}}$
Must drop-out voltage AC/DC	$-/ 0.05 U_{N}$
Technical data	
Mechanical life AC/DC cycles	$-/ 10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$60 \cdot 10^{3}$
Operate/release time ms	5/3
Insulation according to EN 61810-1 ed. 2	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	6
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$
Environmental protection	RT II
Approvals (according to type):	GOST c ${ }^{\text {ciol }}$

34 Series - Slim solid state P.C.B. relay (SSR) 0.1-2 A
tra-slim, 5 mm wide
High switching speed and endurance Silent switching

34.81-9024
34.81-7048
34.81-8240

	Copper side view		Copper side view		Copper side view	
Output circuit						
Contact configuration	1 NO (SPST-NO)		1 NO (SPST-NO)		1 NO (SPST-NO)	
Rated current/Maximum peak current (10 ms A	2/20		0.1/0.5		2/40	
Rated voltage/Maximum blocking voltage V	24/33 DC		48/60 DC		240/275 AC	
Switching voltage range V	(1.5...24)DC		(1.5...48)DC		(12...240)AC	
Minimum switching current mA	1		0.05		22	
Max "OFF-state" leakage current mA	0.001		0.001		1.5	
Max "ON-state" voltage drop V	0.12		1		1.6	
Input circuit						
Nominal voltage V DC	24	60	24	60	24	60
Operating range V DC	16... 30	35... 72	16... 30	35... 72	16... 30	35...72
Control current mA	7	3	7	3	7	3
Release voltage V DC	10	20	10	20	10	20
Impedance $\quad \Omega$	3,200	21,300	3,200	21,300	3,200	21,300
Technical data						
Operate/release time ms	0.1/0.3*		0.02/0.1*		12/12*	
Dielectric strength between input/output V	2,500		2,500		2,500	
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-20...+60		-20...+60		-20...+60	
Environmental protection	RT III		RT III		RT III	
Approvals (according to type):	${ }_{c} \mathbf{D}^{\text {® }}$		${ }_{c} \mathbf{N D}_{\text {US }}$		-	

[^0]
ORDERING INFORMATION

Example: a 34 series slim electromechanical relay, 1 CO (SPDT) 6 A , with 24 V sensitive DC coil.

Series
Type

5 = Electromechanical type
No. of poles
$1=1$ pole, 6 A

Coil version

7 = Sensitive DC

Coil voltage

see coil specifications

A: Contact material

$0=$ Standard AgNi
$4=\mathrm{AgSnO}_{2}$
$5=\mathrm{AgNi}+\mathrm{Au}$
B: Contact circuit

$0=\mathrm{CO}$ (SPDT)
$3=\mathrm{NO}$ (SPST)
Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
34.51	sens. DC	0	0	1	0

All versions

	coil version	A	B	C	D
34.51	sens. DC	$0-4-5$	$0-3$	1	0
34.51	sens. DC	$0-4-5$	0	1	9

SOLID STATE RELAY
Example: a 34 series SSR relay, 2 A , with 24 V DC supply.

Note: All technical data relates to using the relay directly on PCB or PCB socket type 93.11.
If the relay is use with 35 mm rail socket types 93.01 or 93.51 , refer to the technical data of 38 Series, page 98.

POSSIBLE OPTIONS

Copper side view
Option $=34.51 .7 x x x . x 019$

ELECTROMECHANICAL RELAY

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	4
	pollution degree		3
	overvoltage category		III

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s})$ on A1 - A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV})$

OTHER DATA

Bounce time: $\mathrm{NO} / \mathrm{NC}$	ms	$1 / 6$
Vibration resistance (10..55)Hz, max. $\pm 1 \mathrm{~mm}: \mathrm{NO} / \mathrm{NC}$	g / g	$10 / 5$
Power lost to the environment	without contact current	W
	0.2	
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5

CONTACT SPECIFICATIONS

F 34

Electrical life vs AC1 load.

H 34

Breaking capacity in DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 60 \cdot 10^{3}$ cycles.
- In case of DC 13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load Note: the release time of load will be increase.

R 34 DC

Operating range vs ambient temperature.
1-Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

SOLID STATE RELAY

Power lost to the environment	without output current	W
	0.17	

INPUT SPECIFICATION

DC VERSION DATA

Nominal voltage U_{N}	Input code	Operating range			Release voltage
Control current					
24	7.024	$U_{\min }$	$\mathrm{U}_{\max }$		V at U_{N}

OUTPUT SPECIFICATION

L 34/2A

Type 34.81 (2 A-24 V DC and 2 A-240 V AC)
Switching current vs ambient temperature.

L 34/0.1A

Type 34.81 (100 mA - 48 V DC)
Switching current vs ambient temperature.

Approvals (according to type):
C \in © gost cin ${ }^{\circ}$

Relay type	34.51, 34.81	
Screw terminal socket: 35 mm (EN 50022) mounting		
Supply voltage	Relay type	Socket type
$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.xx10	93.01.0.024
24 V AC/DC	34.51.7.024.xx10	93.01.0.024
48 V AC/DC	34.51.7.048.xx10	93.01 .0 .060
$60 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.060.xx10	93.01.0.060
(110...125)V AC/DC	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.01.0.125
(220...240)V AC/DC	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.01.0.240
(110...125)V AC/DC*	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.01.3.125*
(220...240)V AC*	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.01.3.240*
6 V DC	34.51.7.005.xx10	93.01.7.024
12 V DC	34.51.7.012.xx10	93.01.7.024
24 V DC	34.51.7.024.xx10 or 34.81.7.024.xxxx	93.01.7.024
48 V DC	34.51.7.048.xx 10	93.01.7.060
60 V DC	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.01.7.060
Sheet of marker tags (64 tags), $6 \times 10 \mathrm{~mm}$		093.64

* Leakage current suppression.
- Rated values: 6A - 250 V
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts

Protection category: IP 20

- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}\left(\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V}\right),(-40 \ldots+55)^{\circ} \mathrm{C}\left(\mathrm{U}_{\mathrm{N}} \geq 60 \mathrm{~V}\right)$
- - Screw torque: 0.5 Nm
- Wire strip length: 10 mm

Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$
AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$

Approvals (according to type):

Relay type	34.51, 34.81	
Screwless terminal socket: 35 mm (EN 50022) mounting		
Supply voltage	Relay type	Socket type
$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.xx10	93.51.0.024
24 V AC/DC	34.51.7.024.xx10	93.51.0.024
(110...125)V AC/DC	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.51 .0 .125
(220...240)V AC/DC	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.51.0.240
(110...125)V AC/DC*	34.51.7.060.xx 10 or 34.81.7.060.xxxx	93.51.3.125*
(220...240)V AC*	34.51.7.060.xx10 or 34.81.7.060.xxxx	93.51.3.240*
12 V DC	34.51.7.012.xx10	93.51.7.024
24 V DC	34.51.7.024.xx10 or 34.81.7.024.xxxx	93.51.7.024
60 V DC	34.51.7.060.xx 10 or 34.81.7.060.xxxx	93.51.7.060
Sheet of marker tags (64 tags), $6 \times 10 \mathrm{~mm}$		093.64

* Leakage current suppression.
- Rated values: 6A - 250 V
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}\left(\mathrm{U}_{\mathrm{N}} \leq 60 \mathrm{~V}\right),(-40 \ldots+55)^{\circ} \mathrm{C}\left(\mathrm{U}_{\mathrm{N}} \geq 60 \mathrm{~V}\right)$
- Wire strip length: 10 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	1×2.5	1×2.5
AWG	1×14	1×14

93 Series - Sockets and accessories for 34 series relays

Approvals (according to type):

Relay type	$34.51 / 34.81$
Colour	BLUE
P.C.B. sockets with retaining and release clip	93.11

- Rated values: 6 A - 250 V
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- Protection category: IP 20

C ϵ gost ©
${ }_{C}{ }^{-1}{ }^{\circ}$

Retaining and release clip use:

Copper side view

Approvals (according to type):
$\left.{ }^{C}\right)^{\circ}{ }_{\text {us }}^{\text {(18 }}$

Plastic separator	093.01

Thickness 2 mm , required at the start and the end of a group of interfaces.
Can be used for visual separation group, must be used for:

- protective separation of different voltages of neighbouring PLC interfaces according to VDE 0106-101 - protection of cut jumper links

36 Series - Miniałure P.C.B. relays 10 A

- Sensitive DC coil, 360 mW
- Wash tight: RT III
- Basic insulation VDE 0435
36.11

ORDERING INFORMATION

Example: a 36 series miniature P.C.B. relay, 1 CO (SPDT) 10 A contacts, with 12 V DC coil.

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	250	
	rated impulse withstand voltage	kV	2.5	
	pollution degree	2		
	overvoltage category	II		

OTHER DATA

Bounce time: NO/NC
ms $1 / 6$ (for CO or SPDT)
1/— (for NO or SPST-NO)

CONTACT SPECIFICATIONS

F 36

Electrical life vs AC1 load.

H 36

Breaking capacity in DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

$$
\text { R } 36
$$

[^1]40.31
P.C.B. or plug-in mount

AC, DC, sensitive DC or single bistable coil versions available
$8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Ambient temperature $+85^{\circ} \mathrm{C}$
RT III (wash tight) version available

- Sockets and accessories: see 95, 99 and 86 series

* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications

Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load in AC1
Rated load in AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW
Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V}$ A

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specifications

Nominal voltage (UN)	V AC (50/60 Hz)
	V DC
Rated power AC/DC/sens. DC	VA $(50 \mathrm{~Hz}) / \mathrm{W} / \mathrm{W}$
Operating range	AC
	$\mathrm{DC} /$ sens. DC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	AC/DC
Technical data	
Mechanical life AC/DC	cycles
Electrical life at rated load AC1	cycles
Operate/release time	ms
Insulation according to EN 61810-1 ed. 2	

Insulation between coil and contacts (1.2/50 ss) kV
Dielectric strength between open contacts VAC
Ambient temperature range
Envirommental protection
Approvals (according to type):

- 1 pole, 10 A - 3.5 mm pinning - P.C.B./for use with 95 series sockets	- 1 pole, 10 A - 5 mm pinning - P.C.B./for use with 95 series sockets	- 2 pole, 8 A - 5 mm pinning - P.C.B./for use with 95 series sockets
Copper side view	Copper side view	Copper side view
1 CO (SPDT)	1 CO (SPDT)	2 CO (DPDT)
10/20	10/20	8/15
250/400*	250/400*	250/250
2,500	2,500	2,000
500	500	400
0.37	0.37	0.3
10/0.3/0.12	10/0.3/0.12	8/0.3/0.12
300 (5/5)	300 (5/5)	300 (5/5)
AgNi	AgNi	AgNi
6-12-24-48-60-110-120-230-240		
5-6-7-9-12-14-18-21-24-28-36-48-60-90-110-125		
1.2/0.65/0.5	1.2/0.65/0.5	1.2/0.65/0.5
$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
$(0.73 \ldots 1.5) U_{N} /(0.73 \ldots 1.75) U_{N}$	$(0.73 \ldots 1.5) U_{N} /(0.73 \ldots 1.75) \mathrm{U}_{\mathrm{N}}$	$(0.73 \ldots 1.5) \mathrm{U}_{\mathrm{N}} /(0.73 \ldots 1.75) \mathrm{U}_{\mathrm{N}}$
$0.8 U_{N} / 0.4 U_{N}$	$0.8 U_{N} / 0.4 U_{N}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$
$0.2 U_{N} / 0.1 U_{N}$	$0.2 U_{N} / 0.1 U_{N}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$10 \cdot 10^{6} / 20 \cdot 10^{6}$	$10 \cdot 10^{6} / 20 \cdot 10^{6}$	$10 \cdot 10^{6} / 20 \cdot 10^{6}$
$200 \cdot 10^{3}$	$200 \cdot 10^{3}$	$100 \cdot 10^{3}$
7/3-(12/4 sensitive)	7/3-(12/4 sensitive)	7/3-(12/4 sensitive)
$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 2$
6 (8 mm)	6 (8 mm)	6 (8 mm)
1,000	1,000	1,000
$-40 \ldots+85$	$-40 \ldots+85$	$-40 \ldots+85$
RT II **	RT II **	RT II **

** See page 202 "Guidelines for automatic flow solder processes".

Ambient temperature $+85^{\circ} \mathrm{C}$
P.C.B. or plug-in mount

AC, DC, sensitive DC or single bistable coil versions available

- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- RT III (wash tight) version available Sockets and accessories: see 95, 99 and 86 series

* For 400 V applications, where requirements for pollution degree 2 are met.
** With the AgSnO_{2} material the maximum peak current is $100 \mathrm{~A}-5 \mathrm{~ms}$ on NO (nPST-NO) contact.

Contact specifications
Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load in ACl

Rated load in $\mathrm{AC} 15(230 \mathrm{~V} \mathrm{AC})$
Single phase motor rating (230 V AC$)$

Breaking capacity in DC1: 30/110/220 V A

- 1 pole, 16 A -5 mm pinning - P.C.B./for use with 95 series sockets	- Bistable version (1 coil) - P.C.B./for use with 95 series sockets
	Bistable version (1 coil) types: $\begin{aligned} & 40.31 .6 \ldots \\ & 40.51 .6 \ldots \\ & 40.52 .6 \ldots \\ & 40.61 .6 \ldots \end{aligned}$ For wiring diagrams see page 28
1 CO (SPDT)	
16/30**	
250/400*	See relays
4,000	40.31
750	40.51
0.55	40.52
16/0.3/0.12	40.61
500 (10/5)	
AgCdO	
6-12-24-48-60-110-120-230-240	5-6-12-24-48-110
***See below	5-6-12-24-48-110
1.2/0.65/0.5	1.0/1.0/-
$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) U_{N}$
$(0.73 \ldots 1.5) U_{N} /(0.8 \ldots 1.5) U_{N}$	$(0.8 \ldots 1.1) U_{N} /-$
$0.8 \mathrm{U}_{\mathrm{N}} / 0.4 \mathrm{U}_{\mathrm{N}}$	-
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	-
$10 \cdot 10^{6} / 20 \cdot 10^{6}$	See relays
$100 \cdot 10^{3}$	
7/3-(12/4 sensitive)	40.51
$4 \mathrm{kV} / 3$	40.52
6 (8 mm)	40.61
1,000	
$-40 \ldots+85$	Min. impulse duration
RT II**	$\geq 20 \mathrm{~ms}$

*** Nominal voltage (U_{N}):
5-6-7-9-12-14-18-21-
24-28-36-48-60-90-
$110-125 \mathrm{~V}$ DC

40 Series - Miniature P.C.B. relays 8-10-16 A
40.11
40.11-2016
40.41

Plug-in or P.C.B. versions
Sensitive DC version available

- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Sockets and accessories: see 95 series

40.11

40.41
* For 400 V applications, where requirements for pollution degree 2 a
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in ACl

Rated load in AC15 (230 V AC)	VA
Single phase motor rating (230 V AC$)$	kW

Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
Coil specifications

| Nominal voltage (UN) | V AC $(50 / 60 \mathrm{~Hz})$ |
| :--- | ---: | ---: |
| | V DC |
| Rated power AC/DC/sens. DC | $\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W} / \mathrm{W}$ |
| Operating range | AC |
| | $\mathrm{DC} /$ sens. DC |
| Holding voltage | $\mathrm{AC} / \mathrm{DC}$ |
| Must drop-out voltage | $\mathrm{AC} / \mathrm{DC}$ |
| Technical data | |
| Mechanical life AC/DC | cycles |
| Electrical life at rated load AC1 | cycles |
| Operate/release time | ms |
| Insulation according to EN 61810-1 ed. 2 | |
| Insulation between coil and contacts (1.2/50 $\mu \mathrm{ss})$ | kV |
| Dielectric strength between open contacts | V AC |
| Ambient temperature range | ${ }^{\circ} \mathrm{C}$ |
| Envirommental protection | |

Approvals (according to type):

ORDERING INFORMATION
Example: a 40 series P.C.B. relay with 2 CO (SPDT) contacts, with coil rated at 230 VAC .

Series
Type
$1=$ P.C.B. -3.5 mm pinning, flat
$3=$ P.C.B. -3.5 mm pinning
$4=$ P.C.B. -3.5 mm pinning
$5=$ P.C.B. -5 mm pinning
$6=$ P.C.B. -5 mm pinning
No. of poles
1 = 1 pole
for: $40.11,10 \mathrm{~A}$
40.31, 10 A
40.41, 10 A
40.51, 10 A
40.61, 16 A

2 = 2 pole
for 40.52, 8 A

Coil version

6 = AC/DC bistable
7 = Sensitive DC
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=D C$

Coil voltage

see coil specifications

A: Contact material
$0=$ Standard AgNi
for: $40.31 / 51 / 52$
AgCdO for 40.61
$2=\mathrm{AgCdO}$ (standard for 40.11/41)
$4=\mathrm{AgSnO}_{2}$
$5=\mathrm{AgNi}+\mathrm{Au}(5 \mu \mathrm{~m})$
B: Contact circuit
$0=\mathrm{CO}(\mathrm{nPDT})$
$3=\mathrm{NO}(\mathrm{nPST})$

Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
$40.11 / 41$	sens.DC	2	0	0	0
$40.31 / 51$	AC/DC/sens.DC	0	0	0	0
40.52	AC/DC/sens.DC	0	0	0	0
40.61	AC/DC/sens.DC	0	0	0	0

All versions

	coil version	A	B	C	D
40.11	sens. DC	2	0	0	0
40.11	sens. DC	2	0	16	$/$
40.41	sens. DC	2	$0-3$	0	0
$40.31 / 51$	AC/sens. DC	$0-2-5$	$0-3$	0	$0-1$
$40.31 / 51$	DC	$0-2-5$	$0-3$	0	$0-1-3$
40.52	AC/sens. DC	$0-2-5$	$0-3$	0	$0-1$
40.52	DC	$0-2-5$	$0-3$	0	$0-1-3$
40.61	AC/sens. DC	$0-4$	$0-3$	0	$0-1$
40.61	DC	$0-4$	$0-3$	0	$0-1-3$
$40.31 / 51 /$	bistable	0	0	0	0
$52 / 61$					

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2		insulation rated voltage	V	250
		rated impulse withstand voltage	kV	4
		pollution degree		3 (1 CO/SPDT) 2 (2 CO/DPDT)
		overvoltage category		III
Dielectric strength between adjacent contacts	V AC	2,000		

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV})$

OTHER DATA

Bounce time: $\mathrm{NO} / \mathrm{NC}$	ms	$2 / 5$		
Vibration resistance (10..55)Hz, max. $\pm 1 \mathrm{~mm}: \mathrm{NO} / \mathrm{NC}$	g / g	$10 / 4$ (for 1 CO or SPDT)		
Power lost to the environment	without contact current	W	0.6	3/3 (for 2 CO or DPDT)
	with rated current	W	$1.2(40.11 / 31 / 41 / 51)$	$2(40.61 / 52 / 40.11-2016)$
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5		

CONTACT SPECIFICATIONS

F 40 (Types 40.31/51/52/61)

Electrical life vs AC1 load.
1 - Type 40.52 (8 A)
2 - Types 40.31, 40.51 (10 A)
Type 40.61 (16 A)

H 40

Breaking capacity for $\mathrm{DC1}$ load.
1 - Type 40.61
2 - Types 40.11, 40.31, 40.41, 40.51
3 - Type 40.52
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

F 40 (Types 40.11/41)

Electrical life vs AC1 load.
Types 40.11, 40.41 (10 A)
Types 40.11-2016 (16 A)

COIL SPECIFICATIONS
DC VERSION DATA (0.65 W standard - Types 40.31/51/52/61)

40

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$		
V		V	V	Ω	mA
5	9.005	3.65	7.5	38	130
6	9.006	4.4	9	55	109
7	9.007	5.1	10.5	75	94
9	9.009	6.6	13.5	125	72
12	9.012	8.8	18	220	55
14	9.014	10.2	21	300	47
18	9.018	13.1	27	500	36
21	9.021	15.3	31.5	700	30
24	9.024	17.5	36	900	27
28	9.028	20.5	42	1,200	23
36	9.036	26.3	54	2,000	18
48	9.048	35	72	3,500	14
60	9.060	43.8	90	5,500	11
90	9.090	65.7	135	12,500	7.2
110	9.110	80.3	165	18,000	6.2
125	9.125	91.2	187.5	23,500	5.3

DC VERSION DATA (0.5 W sensitive - Types 40.31/51/52/61)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$ *	$U_{\max }{ }^{* *}$		
V		V	V	Ω	mA
5	7.005	3.7	8.8	50	100
6	7.006	4.4	10.5	75	80
7	7.007	5.1	12.2	100	70
9	7.009	6.6	15.8	160	56
12	7.012	8.8	21	300	40
14	7.014	10.2	24.5	400	35
18	7.018	13.2	31.5	650	27.7
21	7.021	15.4	36.9	900	23.4
24	7.024	17.5	42	1,200	20
28	7.028	20.5	49	1,600	17.5
36	7.036	26.3	63	2,600	13.8
48	7.048	35	84	4,800	10
60	7.060	43.8	105	7,200	8.4
90	7.090	65.7	157	16,200	5.6
110	7.110	80.3	192	23,500	4.7
125	7.125	91.2	218.7	32,000	3.9

DC VERSION DATA (0.5 W sensitive - Types 40.11/41)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$U_{\text {min }}$	$\mathrm{U}_{\text {max* }}$		
V		V	V	Ω	mA
6	7.006	4.4	10.5	75	80
12	7.012	8.8	21	300	40
24	7.024	17.5	42	1,200	20
48	7.048	35	84	4,600	10.4
60	7.060	43.8	105	7,200	8.3

${ }^{*} U_{\max }=1.5 U_{N}$ for 40.11-2016

AC VERSION DATA (Types 40.31/51/52/61)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at $U_{N}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	21	168
12	8.012	9.6	13.2	80	90
24	8.024	19.2	26.4	320	45
48	8.048	38.4	52.8	1,350	21
60	8.060	48	66	2,100	16.8
110	8.110	88	121	6,900	9.4
120	8.120	96	132	9,000	8.4
230	8.230	184	253	28,000	5
240	8.240	192	264	31,500	4.1

AC/DC VERSION DATA (bistable - Types 40.31/51/52/61)

Nominal voltage U_{N}	Coil code	Operat $U_{\text {min }}$	range $U_{\max }$	Resistance	Rated coil consumption I at U_{N}	DC: Release resistance** $R_{D C}$
V		V	V	Ω	mA	Ω
5	6.005	4	5.5	23	215	37
6	6.006	4.8	6.6	33	165	62
12	6.012	9.6	13.2	130	83	220
24	6.024	19.2	26.4	520	40	910
48	6.048	38.4	52.8	2,100	21	3,600
110	6.110	88	121	11,000	10	16,500

** $R_{D C}=$ Resistance in $D C, R_{A C}=1.3 \times R_{D C} 1 W$

COIL SPECIFICATIONS
R 40 DC

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

R 40 AC

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

R 40 sens. DC (Types 40.31/51/52/61)

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2-Min pick-up voltage with coil at ambient temperature.
R 40 sens. DC (Types 40.11/41)

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

Wiring diagram for 40 series bistable coil version
AC Operation

On momentary closure of the SET switch the relay is magnetised through the diode and the relay contacts transfer to the set position and remain in this position.
On momentary closure of the RESET switch the relay is demagnetised through limiting resistor (R_{AC}) and the contacts return to the

DC Operation

reset position.
Notes: The minimum SET or RESET impulse time is 20 ms . The maximum time can be continuous. In practice, always ensure that the SET and RESET contacts cannot be operated simultaneously.

Approvals (according to type):

CE (B)
 GOST ${ }_{c} \boldsymbol{n}_{\text {US }}^{\oplus}$

| Relay type | 40.31 | 40.51/52/61 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Colour | BLUE | BLACK | BLUE | BLACK |
| Clamp terminal socket: panel or 35 mm rail (EN 50022) mount,
 retaining clip 095.01 supplied with socket packaging code SPA | 95.03 | 95.03 .0 | 95.05 | 95.05 .0 |
| Plastic retaining and release clip | 095.01 | 095.01 .0 | 095.01 | 095.01 .0 |
| Metal retaining clip | 095.71 | | | |
| 8-way jumper link for 95.03 and 95.05 sockets | 095.18 | 095.18 .0 | 095.18 | 095.18 .0 |
| Identification tag | 095.00 .4 | | | |
| Modules (see table below) | 99.02 | | | |
| Timer modules (see table below) | $86.10,86.20$ | | | |
| Sheet of marker tags for retaining and release clip 095.01 | 060.72 | | | |

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
with a current $>10 \mathrm{~A}$, the contact terminal must be connected in parallel (21 with 11, 24 with 14, 22 with 12)
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts

Protection category: IP 20

- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
(4) Screw torque: 0.5 Nm
- Wire strip length: 8 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

FOR 95.03 AND 95.05 SOCKETS:

86 series module timers (see technical data pages $151 / 156)$	BLUE
Mono-function: $(12 \ldots 24) \mathrm{V} \mathrm{AC/DC;}$; function $\mathrm{Al} ;(1.5 \mathrm{~s} . .60 \mathrm{~min})$	86.10 .0 .024 .0000
Mono-function: $(12 \ldots 24) \mathrm{V} \mathrm{AC/DC} ;$ function $\mathrm{DI} ;(1.5 \mathrm{~s} . .60 \mathrm{~min})$	86.20 .0 .024 .0000

Approvals
(according to type): GOST $C \mathbf{I}_{\text {US }}^{\ominus}$

Approvals (according to type):
${ }_{c} \boldsymbol{N}_{\text {US }}^{\infty} \quad$ GOST

* Modules in Black housing are available on request
**For DC supply, apply the positive to terminal A1.

99.02 coil indication and EMC suppression modules (see technical data page 209)		BLUE*
Diode** (+A 1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode** (+A1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass (62 k $/ 1 \mathrm{~W}$)	(110...240)V AC	99.02.8.230.07

Approvals (according to type):

Relay type	40.31	40.51, 40.52, 40.61			
Colour	BLUE	BLACK	BLUE	BLACK	
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 095.91.3 supplied with socket packaging code SPA	95.83 .3	95.83 .30	95.85 .3	95.85 .30	
Metal retaining clip	095.71				
Plastic retaining and release clip	095.91 .3				
8-way jumper link for 95.83.3 and 95.85.3 sockets	095.08	095.08 .0			
Modules (see table below)	99.80				
Sheet of marker tags for retaining and release clip 095.91.3	060.72				

- Rated values: 10 A - 250 V
with a current $>10 \mathrm{~A}$, the contact terminal must be connected in parallel (21 with 11, 24 with 14, 22 with 12)
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
between coil and contacts (only for 95.83.3)
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (f)ㅏㅏ) Srew torque: 0.5 Nm
-Wire strip length: 7 mm
Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

95.83 .3

FOR 95.83.3 AND 95.85.3 SOCKETS:

8-way jumper link
Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$

095.08

Approvals (according to type):
GOST

* Modules in Black housing are available on request.
**For DC supply, apply the positive to terminal A1.

Green LED is standard.

99.80 coil indication and EMC suppressio (see technical data page 209)	modules	BLUE*
Diode** (+Al, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode** (+A1, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.80.8.230.07

Red LED available on request.

Relay type	40.31, 40.41	40.51, 40.52, 40.61		
Colour	BLUE	BLACK	BLUE	BLACK
P.C.B. socket retaining clip 095.51 supplied with socket packaging code SMA	95.13 .2	95.13 .20	95.15 .2	95.15 .20
Metal retaining clip	0			
Plastic retaining clip	095.51			

Approvals (according to type):

(E cis ${ }_{\text {US }}^{\infty}$ (B) GOST

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

40.31

40.51

95.13 .2

Copper side view

40.61

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.

Code options according to the last three letters:

$95.05 \square \square \longrightarrow$ Without étéring d lip

41 Series - Low-profile P.C.B. relays 8-12-16 A

Low-profile, only 15.7 mm high
DC coil 400 mW

- 8 mm , $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s}$) between coil and contacts
Ambient temperature $+85^{\circ} \mathrm{C}$
Sockets and accessories: see 95 and 99 series

* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage VAC
Rated load in ACl
Rated load in AC15 (230 V AC) VA

Single phase motor rating (230 V AC) kW
Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{VA}$

Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material

Coil specifications

Nominal voltage $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$
Technical data	
Mechanical life AC/DC	cycles
Electrical life at rated load ACl	cycles
Operate/release time	ms
Insulation according to EN 61810-1 ed. 2	
Insulation between coil and contacts (1.2/50 $\mu \mathrm{ss})$	kV
Dielectric strength between open contacts	V AC
Ambient temperature range	${ }^{\circ} \mathrm{C}$
Environmental protection	

Approvals (according to type):
41.31

41.52
41.61

ORDERING INFORMATION

Example: a 41 series low-profile P.C.B. relay with 2 CO (DPDT) contacts, with coil rated 24 V DC.

Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
$41.31 / 52 / 61$	DC	0	0	1	0

All versions

	coil version	A	B	C	D
41.31	DC	$0-4-5$	$0-3$	1	$0-1$
41.52	DC	$0-5$	$0-3$	1	$0-1$
41.61	DC	$0-4$	$0-3$	1	$0-1$

TECHNICAL DATA

INSULATION

| Insulation according to EN 61810-1 ed. 2 | insulation rated voltage | V | 250 |
| :--- | :--- | :--- | :--- | :--- |
| | rated impulse withstand voltage | kV | 4 |
| | pollution degree | | |
| | overvoltage category | 3 | |
| Dielectric strength between adjacent contacts | 2,000 | III | |

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC	ms	2/5		
Vibration resistance (10...55) Hz, max. $\pm 1 \mathrm{~mm}$: $\mathrm{NO} / \mathrm{NC}$	g / g	20/5		
Power lost to the environment without contact current	W	0.4		
with rated current	W	1.7 (41.31)	$1.2(41.52)$	1.8 (41.61)
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5		

CONTACT SPECIFICATIONS
F 41

Contact life vs ACl load.
1 - Type 41.52 (8 A) at 360 cycles $/ \mathrm{h}$
2 - Type 41.31 (12 A) at 360 cycles $/ \mathrm{h}$ Type 41.61 (16 A) at 360 cycles $/ \mathrm{h}$

H 41

Breaking capacity for $\mathrm{DC1}$ load.
1-Type 41.61
2- Type 41.31
3 - Type 41.52
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DCl 3 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

R 41 DC

[^2]| Relay type | 41.31 | 41.52, 41.61 | | |
| :--- | :--- | :--- | :--- | :--- |
| Colour | BLUE | BLACK | BLUE | BLACK |
| P.C.B. socket
 retaining clip 095.41 supplied with socket packaging code SNA | 95.13 .2 | 95.13 .20 | 95.15 .2 | 95.15 .20 |
| Metal retaining clip | 095.41 | | | |
| Plastic retaining clip | 095.42 | | | |

41

41.31

Approvals (according to type):

- Rated values: 10 A - 250 V
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

95.13 .2

Copper side view

41.52

41.61

95.15.2

Copper side view

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

A Standard packaging

SN Metal retaining clip
SL Plastic retaining clip
9 5. $1 \times 3 \square \square$ Without retaining clip
15.4 mm high

Very low coil consumption, only 250 mW - $10 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Ambient temperature $+85{ }^{\circ} \mathrm{C}$
Sockets: see type 95.23

43.41

43.41-0300 / 43.61-0300

* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in AC1
Rated load in AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW

| Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V} \mathrm{~A}$ |
| :--- | ---: |
| Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$ |

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	
Coil specifications	

Coil specifications
Nominal voltage $\left(U_{N}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$

Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$

Technical data

Mechanical life AC/DC	cycles
Electrical life at rated load AC1	cycles

$\begin{array}{ll}\text { Operate/release time } & \mathrm{ms} \\ \text { Insulation according to EN 61810-1 ed. } 2\end{array}$
Insulation between coil and contacts (1.2/50 ss) kV
Dielectric strength between open contacts VAC
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Environmental protection
Approvals (according to type):

43.41

ORDERING INFORMATION

Example: a 43 series low-profile P.C.B. relay with 1 CO contact (SPDT), with coil rated 24 V DC.

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	4
	pollution degree	3	
	overvoltage category	III	

CONDUCTED DISTURBANCE IMMUNITY

Burst $(5 \ldots 50) \mathrm{ns}, 5 \mathrm{kHz}$, on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC		ms	3/6	
Vibration resistance ($10 \ldots 55$) Hz , max. $\pm 1 \mathrm{~mm}$: $\mathrm{NO} / \mathrm{NC}$		g / g	10/10	
Power lost to the environment	without contact current	W	0.25 (43.41)	0.4 (43.61)
	with rated current	W	1.3 (43.41)	2 (43.61)
Recommended distance between relays mounted on P.C.B.s mm			≥ 5	

CONTACT SPECIFICATIONS

F 43

Electrical life vs AC1 load.

H 43

Breaking capacity in DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

R 43 DC

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

$\left.$| Nominal
 voltage
 U_{N} | Coil
 code | Operating range | | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | | Rated coil |
| :---: |
| consumption | \right\rvert\,

Relay type	43.41	
Colour	BLUE	BLACK
P.C.B. socket (CO/SPDT only) retaining clip 095.43 supplied with socket packaging code SNA	95.23	95.23 .0
Metal retaining clip		095.43

Approvals (according to type):

Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts

- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Copper side view

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.

Code options according to the last three letters:

Plug-in or P.C.B. versions

- DC and sensitive DC available
- $8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
Ambient temperature $+85{ }^{\circ} \mathrm{C}$
- High physical separation between adjacent contacts
- Sockets and accessories: see 95,99 and 86 series

* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in ACl

Rated load in AC15 (230 V AC)	VA
Single phase motor rating (230 V AC$)$	kW

Breaking capacity in DC1: 30/110/220 V A

Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)	300 (5/5)
Standard contact material	AgNi	AgNi
Coil specifications		
Nominal voltage (U_{N})	-	-
	6-9-12-14-24-28-48-60-110-125	
Rated power AC/DC/sens. DC VA (50 Hz)/W/W	-/0.65/0.5	-/0.65/0.5
Operating range	-	-
	$(0.73 \ldots 1.5) \mathrm{U}_{\mathrm{N}} /(0.73 \ldots 1.7) \mathrm{U}_{\mathrm{N}}$	$(0.73 \ldots 1.5) \mathrm{U}_{\mathrm{N}} /(0.8 \ldots 1.7) \mathrm{U}_{\mathrm{N}}$
Holding voltage AC/DC	-/0.4 U ${ }_{\text {N }}$	-/0.4 U
Must drop-out voltage AC/DC	$-/ 0.1 U_{N}$	$-/ 0.1 U_{N}$
Technical data		
Mechanical life AC/DC cycles	-/20 10^{6}	$-/ 20 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$150 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	8/5-(12/5 sens.)	8/5-(12/5 sens.)
Insulation according to EN 61810-1 ed. 2	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/50 1 s) kV	$6(8 \mathrm{~mm})$	$6(8 \mathrm{~mm})$
Dielectric strength between open contacts V AC	1,000	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	$-40 \ldots+85$
Environmental protection	RT II	RT II
Approvals (according to type):	CE GOST (1) IRA	RINA c ${ }^{\text {cI }}$

ORDERING INFORMATION

Example: a 44 series P.C.B. relay with 2 CO (DPDT) 10 A contacts, coil rated 24 V DC.

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	4
	pollution degree	3	
	overvoltage category	III	
Dielectric strength between adjacent contacts	V AC	2,500	

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV})$

OTHER DATA

Bounce time: $\mathrm{NO} / \mathrm{NC}$	ms	$4 / 4$		
Vibration resistance (10..55) Hz, max. $\pm 1 \mathrm{~mm}: \mathrm{NO} / \mathrm{NC}$	g / g	$3 / 3$		
Power lost to the environment	without contact current	W	0.6	
	with rated current	W	$1.2(44.52)$	2.7
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5		

CONTACT SPECIFICATIONS
F 44

Electrical life vs ACl load.
Type 44.52 (6 A).
Type 44.52 (10 A).

H 44

Breaking capacity for DC1 load.
1 - Type 44.62
2 - Type 44.52
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC 1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DCl 3 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

DC VERSION DATA (0.5 W sensitive)

Nominal voltage U_{N}	Coil code	Opera $U_{\text {min }}{ }^{*}$	range $U_{\max }$	Resistance consumption R	Rated coil I at U_{N}
V		V	\checkmark	Ω	mA
6	7.006	4.4	10.2	75	80
9	7.009	6.6	15.3	160	56
12	7.012	8.8	20.4	300	40
14	7.014	10.2	23.8	400	35
24	7.024	17.5	40.8	1,200	20
28	7.028	20.5	47.6	1,600	17.5
48	7.048	35	81.6	4,800	10
60	7.060	43.8	102	7,200	8.4
110	7.110	80.3	187	23,500	4.7
125	7.125	100	218.7	32,000	3.9

${ }^{*} \mathrm{U}_{\text {min }}=0.8 \mathrm{U}_{\mathrm{N}}$ for 44.62
R 44 sens. DC

[^3]

Approvals (according to type):

C \in (B) (자
 GOST c넨

Relay type	44.52, 44.62	
Colour	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 095.01 supplied with socket packaging code SPA	95.05	95.05 .0
Plastic retaining and release clip	095.01	095.01 .0
Metal retaining clip	095.71	
8 -way jumper link	095.18	095.18 .0
Identification tag	095.00.4	
Modules (see table below)	99.02	
Timer modules (see table below)	86.10, 86.20	
Sheet of marker tags for retaining and release clip 095.01	060.72	

Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$

- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- 간) Screw torque: 0.5 Nm
- Wire strip length: 8 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

FOR 95.05 SOCKET:

8-way jumper link	095.18

- Rated values: 10 A - 250 V

86 series module timers (see technical data pages $151 / 156$)
Mono-function: (12..24)V AC/DC; function AI; (1.5s...60min)
Mono-function: (12...24)V AC/DC; function DI; (1.5s...60min)
BLUE
86.10.0.024.0000
86.20.0.024.0000

Approvals (according to type): GOST c ${ }^{\text {US }}$

99.02 coil indication and EMC suppression modules (see technical data page 209)		BLUE*
Diode** (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode** (+A1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC	(6...24)V DC/AC	99.02.0.024.09
RC	(28...60)V DC/AC	99.02.0.060.09
RC	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.02.8.230.07

> * Modules in Black housing are available on request
> **For DC supply, apply the positive to terminal A1.

Approvals (according to type):

 GOST- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- 간) Screw torque: 0.5 Nm
- Wire strip length: 7 mm
- Max wire size:

Relay type	$44.52,44.62$			
Colour	BLUE	BLACK		
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 095.91.3 supplied with socket packaging code SPA	95.85 .3	95.85 .30		
Metal retaining clip		095.71		
Plastic retaining and release clip	095.91 .3			
8 -way jumper link	095.08	095.08 .0		
Modules (see table below)	99.80			
Sheet of marker tags for retaining and release clip 095.91.3		060.72		

$$
\begin{array}{|c|l|l|}
\hline & & \text { solid wire } \\
\text { - Max wire size } & \text { stranded wire } \\
\hline \mathrm{mm}^{2} & 1 \times 6 / 2 \times 2.5 & 1 \times 4 / 2 \times 2.5 \\
\hline \text { AWG } & 1 \times 10 / 2 \times 14 & 1 \times 12 / 2 \times 14 \\
\hline
\end{array}
$$

FOR 95.85.3 SOCKET:

8-way jumper link \quad Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$

Approvals (according to type): GOST

* Modules in Black housing are available on request.
**For DC supply, apply the positive to terminal A1.

Green LED is standard. Red LED available on request.

99.80 coil indication and EMC suppressio (see technical data page 209)	modules	BLUE*
Diode** (+A1, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode** (+AI, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.80.8.230.07

Approvals (according to type):

Relay type	44.52, 44.62	
Colour	BLUE	BLACK
P.C.B. socket retaining clip 095.51 supplied with socket with packagimg code SMA	95.15 .2	95.15 .20
Metal retaining clip		095.51
Plastic retaining clip		095.52

C $C_{c} \boldsymbol{N I}_{\text {US }}$ (B) GOST

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s}$) between coil and contacts

Protection category: IP 20
Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Copper side view

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

45.71

- Miniature P.C.B. Faston 250 connect relay

Sensitive DC coil

- $8 \mathrm{~mm}, 6 \mathrm{kV}$ (1.2/50 $\mu \mathrm{s}$) between coil and contacts
- Ambient temperature $+125^{\circ} \mathrm{C}$
- NO (SPST-NO) contact or NC (SPST-NC) contact version

45.71.7.xxx.0x10

pollution degree 2 ar
Contact specifications
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in AC1
Rated load in AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW

Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V} \mathrm{~A}$	
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
Coil specifications

ORDERING INFORMATION
Example: a 45 series for P.C.B. relay + Faston 250, 1 NO (SPST-NO) contact, coil rated 12 V DC.

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	4
	pollution degree		3
	overvoltage category		III

OTHER DATA

Bounce time: NO/NC	ms	3/- (for 1NO or SPST-NO)	-/3 (for 1NC or SPST-NC)
Vibration resistance (10...55)Hz, max. $\pm 1 \mathrm{~mm}$: $\mathrm{NO} / \mathrm{NC}$	g / g	10/10	
Power lost to the environment without contact current		0.4	
with rated current	W	1.8	
Recommended distance between relays mounted on P.C.B.s		≥ 5	

CONTACT SPECIFICATIONS

F 45

Electrical life ACl load $\left(+85^{\circ} \mathrm{C}\right)$.

H 45

Breaking capacity for DCl load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

COIL SPECIFICATIONS

DC VERSION DATA (0.36 W sensitive)

$\left.$| Nominal
 voltage
 U_{N} | Coil
 code | Operating range | | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | | Rated coil |
| :---: |
| consumption | \right\rvert\,

R 45 DC

Operating range vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

55 Series - Miniature general purpose relays 7-10 A
P.C.B. versions

- AC or DC coils
- RT III (wash tight) version available
55.12

55.14

55 Series - Miniałure general purpose relays 7-10 A

Plug-in versions
AC or DC coils

- Lockable test button and mechanical flag indicator as standard on 2 and 4 CO (DPDT and 4PDT) relays types
Sockets and accessories: see 94, 99 and 86 series
55.32

2 pole, 10 A

- Plug-in for use with 94 series sockets
55.33

55.34

- 4 pole, 7 A
- Plug-in for use with 94 series sockets

142536

A1 A2

15263748
 ${ }_{13}-\mathrm{C}_{14}$ A1 A2

Contact specifications
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load in AC1
Rated load in AC15 (230 V AC)
Single phase motor rating (230 VAC)
Breaking capacity in $\mathrm{DC} 1: 30 / 110 / 220 \mathrm{~V}$ A
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Coil specifications
Nominal voltage (UN) VAC (50/60 Hz)
Rated power AC/DC VA (50 Hz$) / \mathrm{W}$
Operating range

Holding voltage AC/DC
Must drop-out voltage AC/DC
Technical data
Mechanical life AC/DC cycles

Electrical life at rated load AC1	cycles
Operate/release time	ms

Insulation according to EN 61810-1 ed. 2
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV
Dielectric strength between open contacts V AC
Ambient temperature range
Environmental protection
Approvals (according to type):

ORDERING INFORMATION
Example: a 55 series plug-in relay, 4 CO (4PDT) contacts, coil rated 12 V DC with a lockable test button and mechanical indicator.

Type

$1=$ P.C.B.
3 = Plug-in
No. of poles
2 = 2 pole, 10 A
3 = 3 pole, 10 A
$4=4$ pole, 7 A
Coil version
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=D C$

Coil voltage

see coil specifications
Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
$55.32 / 34$	AC/DC	0	0	4	0
$55.12 / 13 / 14$	AC/DC	0	0	0	0
55.33	AC/DC	0	0	0	0

All versions

	coil version	A	B	C	D
$55.32 / 34$	AC/DC	$0-2-5$	0	0	$0-6$
	AC	$0-2-5$	0	$2-3-4-5$	$0-6$
	AC	$0-2-5$	0	54	$/$
	DC	$0-2-5$	0	$2-4-6-7-8-9$	$0-6$
	DC	$0-2-5$	0	$74-94$	$/$
	AC/DC	$0-2-5$	0	0	$0-6$
	AC	$0-2-5$	0	$1-3-5$	$0-6$
	DC	$0-2-5$	0	$1-6-7-8-9$	$0-6$

POSSIBLE OPTIONS

Option $=0006$
REAR FLANGE MOUNT

LOCKABLE TEST BUTTON AND MECHANICAL FLAG INDICATOR (0040)

The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

ACCESSORIES

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2		insulation rated voltage V			400 (2-3 pole)	250 (4 pole)
		rated impulse withstand voltage			3.6 (2-3 pole)	2.5 (4 pole)
		pollution degree			2	
		overvoltage category			III	
		2 CO (DPDT)	3 CO (3PDT)			4 CO (4PDT)
Dielectric strength between adjacent contact	V AC	2,000	2,000		1,550	

CONDUCTED DISTURBANCE IMMUNITY

Burst $(5 \ldots 50) \mathrm{ns}, 5 \mathrm{kHz}$, on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge $(1.2 / 50 \mu \mathrm{~s})$ on $\mathrm{A} 1-\mathrm{A} 2$ (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC	ms	1/4		
Vibration resistance (10...55) Hz, max. $\pm 1 \mathrm{~mm}$: NO/NC	g / g	6/6		
Power lost to the environment		2 CO (DPDT)	3 CO (3PDT)	4 CO (4PDT)
without contact current		1	1	1
with rated current		3	4	3
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5		

CONTACT SPECIFICATIONS

F 55

Electrical life vs AC1 load.
1-2-3CO (DPDT-3PDT) relay type (10 A)
2-4 CO (4PDT) relay type (7 A)

H 55

Breaking capacity for DC1 load.
1-2-3 CO (DPDT - 3PDT) type
2-4 CO (4PDT) type
A - Load applied to 1 contact
B - Load applied to 2 contacts in series
C - Load applied to 3 contacts in series
D - Load applied to 4 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

COIL SPECIFICATIONS

DC VERSION DATA

Nominal	Coil	Operating range		Resistance	Rated coil
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I at U_{N}
V		V	V	Ω	mA
6	9.006	4.8	6.6	40	150
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40
48	9.048	38.4	52.8	2,400	20
60	9.060	48	66	4,000	15
110	9.110	88	121	12,500	8.8
125	9.125	100	137.5	17,300	7.2
220	9.220	176	242	54,000	4

AC VERSION DATA

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption\end{array}\right]\)

R 55 AC

Operating range (AC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

Approvals (according to type):

C \in (B) (8)
 GOST ${ }^{\text {chi }}$

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.01 supplied with socket packaging code SPA	94.02	94.02.0	94.03	94.03 .0	94.04	94.04.0
Metal retaining clip	094.71					
Plastic retaining and release clip	094.01					
6 -way jumper link for 94.02, 94.03 and 94.04 sockets	094.06	094.06.0	094.06	094.06.0	094.06	094.06.0
Identification tag	094.00.4					
Modules (see table below)	99.02					
Timer modules (see table below)	86.10, 86.20					
Sheet of marker tags for retaining and release clip 094.01	060.72					

Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$

- Dielectric strength: $\geq 2 \mathrm{kV}$ AC
- Protection category: IP 20

Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
(4) Screw torque: 0.5 Nm

Wire strip length: 8 mm

- Max wire size:

94.02

FOR 94.02, 94.03 AND 94.04 SOCKETS:

6-way jumper link

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
094.06

86 series module timers (see technical data pages $151 / 155$)
Mono-function: (12...24)V AC/DC; function AI; (1.5s...60min)
BLUE
Mono-function: (12...24)V AC/DC; function DI; (1.5s...60min)
86.10.0.024.0000
86.20.0.024.0000

Approvals
Approvals
(according to type): GOST ${ }_{c} \mathbf{I I}_{\text {US }}^{\text {U }}$

Approvals (according to type):
c II $_{\text {US }}^{\text {UST }}$

* Modules in Black housing are available on request.
**For DC supply, apply the positive to terminal A1.

99.02 coil indication and EMC suppression modules (see technical data page 209)	
Diode** (+A1, standard polarity)	(6...220)V DC
Diode (+A2, non standard polarity)	(6...220)V DC
LED	(6...24)V DC/AC
LED	(28...60)V DC/AC
LED	(110...240)V DC/AC
LED + Diode** (+A1, standard polarity)	(6...24)V DC
LED + Diode** (+A1, standard polarity)	(28...60)V DC
LED + Diode** (+A1, standard polarity)	(110...220)V DC
LED + Diode (+A2, non standard polarity)	(6...24)V DC
LED + Diode (+A2, non standard polarity)	(28...60)V DC
LED + Diode (+A2, non standard polarity)	(110...220)V DC
LED + Varistor	(6...24)V DC/AC
LED + Varistor	(28...60)V DC/AC
LED + Varistor	(110...240)V DC/AC
RC circuit	(6...24)V DC/AC
RC circuit	(28...60)V DC/AC
RC circuit	(110...240)V DC/AC
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC

BLUE*
99.02 .3 .000 .00
99.02 .2 .000 .00
99.02 .0 .024 .59
99.02 .0 .060 .59
99.02 .0 .230 .59
99.02 .9 .024 .99
99.02 .9 .060 .99
99.02 .9 .220 .99
99.02 .9 .024 .79
99.02 .9 .060 .79
99.02 .9 .220 .79
99.02 .0 .024 .98
99.02 .0 .060 .98
99.02 .0 .230 .98
99.02 .0 .024 .09
99.02 .0 .060 .09
99.02 .0 .230 .09
99.02 .8 .230 .07

94 Series - Sockets and accessories for 55 series relays

Approvals (according to type):

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
(가 Screw torque: 0.5 Nm
- Wire strip length: 8 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$
AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$

94.72

$\mathbf{5 5 . 3 2}$						
$\mathbf{5 5 . 3 3}$					$\mathbf{5 5 . 3 2 , 5 5 4}$	
BLUE	BLACK	BLUE	BLACK	BLUE	BLACK	
94.72	94.72 .0	94.73	94.73 .0	94.74	94.74 .0	

Approvals
(according to type):

- Rated values: 10 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
(ㄱ) Screw torque: 0.5 Nm
Wire strip length: 9 mm

Relay type			
Colour			
Screw terminal socket: panel or 35 mm rail (EN 50022) mount, 23 retaining clip 094.71 supplied with socket packaging code S			
Metal retaining clip			
Modules (see table below)			
$c{ }^{-1}$			
50 V	Max	wire size:	
$\begin{aligned} & \mathrm{kV} \mathrm{AC} \\ & 20 \end{aligned}$		solid wire	stranded wire
$(-40 \ldots+70)^{\circ} \mathrm{C}$	mm^{2}	1x2.5 / 2x1.5	1x2.5 / 2x1.5
Nm	AWG	$1 \times 14 / 2 \times 16$	1x14/2x16

FOR 94.72, 94.73, 94.74 AND 94.82 SOCKETS:

99.01 coil indication and EMC suppression modules (see technical data pag. 209)		BLUE*
Diode** (+A1, standard polarity)	(6...220)V DC	99.01.3.000.00
Diode (+A2, non standard polarity)	(6...220)V DC	99.01.2.000.00
LED	(6...24)V DC/AC	99.01.0.024.59
LED	(28...60)V DC/AC	99.01.0.060.59
LED	(110...240)V DC/AC	99.01.0.230.59
LED + Diode** (+A1, standard polarity)	(6...24)V DC	99.01.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.01.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.01.9.220.99
LED + Diode (+A2, non standard polarity)	(6...24)V DC	99.01.9.024.79
LED + Diode (+A2, non standard polarity)	(28...60)V DC	99.01.9.060.79
LED + Diode (+A2, non standard polarity)	(110...220)V DC	99.01.9.220.79
LED + Varistor	(6...24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)V DC/AC	99.01.0.060.98
LED + Varistor	(110...240)V DC/AC	99.01.0.230.98
RC circuit	(6...24)V DC/AC	99.01.0.024.09
RC circuit	(28...60)V DC/AC	99.01.0.060.09
RC circuit	(110...240)V DC/AC	99.01.0.230.09
Residual current by-pass (62 k $/$ /1W)	(110...240)V AC	99.01.8.230.07

Approvals (according to type):

Relay type	$\mathbf{5 5 . 3 2}$	$\mathbf{5 5 . 3 2 , 5 5 . 3 4}$		
Colour	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.71 supplied with socket packaging code SMA	94.82 .3	94.82 .30	94.84 .3	94.84 .30
Metal retaining clip	094.71			
Plastic retaining and release clip	094.91 .3			
Identification tag	094.80 .2			
Modules (see table below)	99.80			

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (ㅏㄱ) Screw torque: 0.5 Nm
- Wire strip length: 7 mm

Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

Approvals (according to type):

Relay type	$\mathbf{5 5 . 3 2 , 5 5 . 3 4}$	
Colour	BLUE	BLACK
Screwless terminal socket: 35 mm rail (EN 50022) mount	94.54 .1	94.54 .10
Metal retaining clip		094.71
Plastic retaining and release clip		094.92
Sheet of marker tags for retaining and release clip 094.92	020.24	
Modules (see table below)	99.80	

(\in (B) Gost \boldsymbol{T})

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-25 \ldots+70)^{\circ} \mathrm{C}$
- Wire strip length: 7 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$2 \times(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
AWG	$2 \times(24 \ldots 18)$	$2 \times(24 \ldots 18)$

FOR 94.82.3, 94.84.3 AND 94.54.1 SOCKETS:

Approvals (according to type): GOST

* Modules in Black housing are available on request
**For DC supply, apply the positive to terminal A1.

Green LED is standard.
Red LED available on
57 request.

99.80 coil indication and EMC suppression modules (see technical data page 209)		BLUE*
Diode** (+Al, standard polarity)	(6...220)V DC	99.80.3.000.00
LED	(6...24)V DC/AC	99.80.0.024.59
LED	(28...60)V DC/AC	99.80.0.060.59
LED	(110...240)V DC/AC	99.80.0.230.59
LED + Diode** (+AI, standard polarity)	(6...24)V DC	99.80.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.80.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.80.9.220.99
LED + Varistor	(6...24)V DC/AC	99.80.0.024.98
LED + Varistor	(28...60)V DC/AC	99.80.0.060.98
LED + Varistor	(110...240)V DC/AC	99.80.0.230.98
RC circuit	(6...24)V DC/AC	99.80.0.024.09
RC circuit	(28...60)V DC/AC	99.80.0.060.09
RC circuit	(110...240)V DC/AC	99.80.0.230.09
Residual current by-pass (62 k $\Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.80.8.230.07

94 Series - Sockets and accessories for 55 series relays

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
P.C.B. socket retaining clip 094.51 supplied with socket packaging code SMA	94.12	94.12.0	94.13	94.13 .0	94.14	94.14.0
Metal retaining clip	094.51					

Approvals (according to type):
C \in (B) (1/ GOST
(1RAM) $\Leftrightarrow \mathrm{Cll}_{\text {US }}^{\circ}$

- Rated values: 10 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Approvals (according to type):
C \in (B) (© GOST (एAM

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Panel mount solder socket: 1 mm thick panel retaining clip 094.51 supplied with socket packaging code SMA	94.22	94.22.0	94.23	94.23.0	94.24	94.24 .0
Metal retaining clip	094.51					

- Rated values: 10 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Panel mount socket: M3 screw mount - solder connections retaining clip 094.51 supplied with socket packaging code SMA	94.32	94.32 .0	94.33	94.33 .0	94.34	94.34 .0
Metal retaining clip	094.51					

Approvals (according to type):

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

A Standard packaging

SM Metal retaining clip
SP Plastic retaining clip
$94.04 \longrightarrow \quad$ Without eleaining clip

- Plug-in version

AC or DC coils

- Lockable test button and mechanical flag indicator as standard on 2 CO (DPDT) relay type
Sockets and accessories: see 96 and 99 series
* For 400 V applications, where requirements for pollution degree 2 are met.
**For 4 CO (4PDT) only
Contact specifications
Contact configuration

Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC

Rated load in AC1
56.32

56.32-0300

56.34

P.C.B. version
$A C$ or DC coils

ORDERING INFORMATION
Example: a 56 series plug-in relay with 2 CO (DPDT) contacts, coil rated 12 V DC with a lockable test button and mechanical indicator.

Type

3 = Plug-in
$4=$ P.C.B.
No. of poles
$2=2$ pole, 12 A
$4=4$ pole, 12 A

Coil version

$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=D C$

Coil voltage

see coil specifications
Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
56.32	AC/DC	0	0	4	0
56.34	AC/DC	0	0	0	0
56.42	AC/DC	0	0	0	0
56.44	AC/DC	0	0	0	0

All versions

	coil version	A	B	C	D
56.32	AC	$0-2-4$	0	$0-2-3-4-5$	$0-6$
	AC	$0-2-4$	0	54	$/$
	AC	$0-2-4$	3	$0-3-5$	$0-6$
	DC	$0-2-4$	0	$0-2-4-8-9$	$0-6$
	DC	$0-2-4$	0	94	$/$
	DC	$0-2-4$	3	0	0
56.34	AC/DC	$0-2-4$	0	$0-1$	$0-5-6-7-8$
56.42	AC/DC	$0-2-4$	$0-3$	0	0
56.44	AC/DC	$0-2-4$	0	0	0

0 = Standard
5 = Top flange mount (56.34 only)
6 = Rear flange mount
7 = Top 35 mm rail mount (56.34 only)
$8=$ Rear 35 mm rail mount (56.34 only)

C: Options

$0=$ None
1 = Test button
2 = Mechanical indicator
3 = LED (AC only)
4 = Lockable test button + mechanical indicator
5 = Lockable test button + LED (AC only)
54 = Lockable test button + LED (AC only) + mechanical indicator
6 = Double LED (DC not polarized)
7 = Lockable test button + double LED (DC not polarized)
74 = Lockable test button + double LED (DC not polarized) + mechanical indicator
$8=$ LED + diode (polarity positive to pin 7, DC)
9 = Lockable test button + LED + diode (polarity positive to pin 7, DC)
94 = Lockable test button + LED + diode + mechanical indicator (polarity positive to pin 7, DC)

POSSIBLE OPTIONS

LOCKABLE TEST BUTTON AND MECHANICAL FLAG INDICATOR (0040)

The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

ACCESSORIES

Adaptor with top mount flange for 56.32.x.xxx.xx00
056.05

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage V	250
	rated impulse withstand voltage kV	4
	pollution degree	3
	overvoltage category	III
Dielectric strength between adjacent contacts V AC	2,500	

CONDUCTED DISTURBANCE IMMUNITY

Burst $(5 \ldots 50) \mathrm{ns}, 5 \mathrm{kHz}$, on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge $(1.2 / 50 \mu \mathrm{~s})$ on A1 - A2 (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC	ms	3/- (for NO or nPST-NO)	1/3 (for CO or nPDT)
Vibration resistance ($10 \ldots . .55$) Hz , max. $\pm 1 \mathrm{~mm}$: NO/NC	g / g	8/8	
Power lost to the environment		2 CO (DPDT) /2 NO (DPST-NO)	4 CO (4PDT)
without contact current	W	1	1.3
with rated current	W	3.8	6.9
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5	

CONTACT SPECIFICATIONS

F 56

Electrical life vs AC1 load.
1 - Types 56.32/42
2 - Types 56.34/44

H 56 (CO/nPDT)

Breaking capacity for DC1 load.
A - Load applied to 1 contact
B - Load applied to 2 contacts in series
C - Load applied to 3 contacts in series
D - Load applied to 4 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

H 56 (NO/nPST-NO)

Breaking capacity for DC1 load.
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

COIL SPECIFICATIONS
DC VERSION DATA (2 CO/DPDT, 2 NO/DPST-NO)

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption\end{array}\right]\)

DC VERSION DATA (4 CO/4PDT)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
6	9.006	5.1	6.6	32.5	185
12	9.012	10.2	13.2	123	97
24	9.024	20.4	26.4	490	49
48	9.048	40.8	52.8	1,800	27
60	9.060	51	66	3,000	20
110	9.110	93.5	121	10,400	10.5
125	9.125	100	137.5	14,200	8.8
220	9.220	176	242	44,000	5

R 56 DC (2 CO/DPDT, 2 NO/DPST-NO)

R 56 DC (4 CO/4PDT)

Operating range (DC type) vs ambient temperature.

[^4]AC VERSION DATA (2 CO/DPDT, 2 NO/DPST-NO)

Nominal voltage U_{N}	Coil code	Operating range		Resistance	Rated coil
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
V		V	V	Ω	mA
6	8.006	4.8	6.6	12	200
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
60	8.060	48	66	1,200	21
110	8.110	88	121	3,940	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6
240	8.240	192	264	19,100	5.3

AC VERSION DATA (4 CO/4PDT)

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at $U_{N}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
6	8.006	4.8	6.6	5.7	300
12	8.012	9.6	13.2	22	150
24	8.024	19.2	26.4	81	90
48	8.048	38.4	52.8	380	37
60	8.060	48	66	600	30
110	8.110	88	121	1,900	16.5
120	8.120	96	132	2,560	13.4
230	8.230	184	253	7,700	9
240	8.240	192	264	10,000	7.5
400	8.400	320	440	26,000	4.9

R 56 AC (2 CO/DPDT, 2 NO/DPST-NO)

R 56 AC (4 CO/4PDT)

Operating range (AC type) vs ambient temperature.
1-Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

Relay type	$\mathbf{5 6 . 3 2}$	$\mathbf{5 6 . 3 4}$		
Colour	BLUE	BLACK	BLUE	BLACK
Screw terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.71/096.71 supplied with socket packaging code SMA	96.72	96.72 .0	96.74	96.74 .0
Metal retaining clip	094.71		096.71	
Modules (see table below)	99.01			

Approvals (according to type):

- Rated values: 12 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (4)ㅏㅏㄱ Screw torque: 0.8 Nm
- Wire strip length: 10 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 4 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 12 / 2 \times 12$	$1 \times 12 / 2 \times 14$

96.72

96.74

FOR 96.72 AND 96.74 SOCKETS:

Approvals

 (according to type):GOST

* Modules in Black housing are available on request
**For DC supply, apply the positive to terminal A1.

Green LED is standard. Red LED available on request.

99.01 coil indication and EMC suppression modules (see technical data page 209)		BLUE*
Diode** (+A1, standard polarity)	(6...220)V DC	99.01.3.000.00
Diode (+A2, non standard polarity)	(6...220)V DC	99.01.2.000.00
LED	(6...24)V DC/AC	99.01.0.024.59
LED	(28...60)V DC/AC	99.01.0.060.59
LED	(110...240)V DC/AC	99.01.0.230.59
LED + Diode** (+A1, standard polarity)	(6...24)V DC	99.01.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.01.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.01.9.220.99
LED + Diode (+A2, non standard polarity)	(6...24)V DC	99.01.9.024.79
LED + Diode (+A2, non standard polarity)	(28...60)V DC	99.01.9.060.79
LED + Diode (+A2, non standard polarity)	(110...220)V DC	99.01.9.220.79
LED + Varistor	(6...24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)V DC/AC	99.01.0.060.98
LED + Varistor	(110...240)V DC/AC	99.01.0.230.98
RC circuit	(6...24)V DC/AC	99.01.0.024.09
RC circuit	(28...60)V DC/AC	99.01.0.060.09
RC circuit	(110...240)V DC/AC	99.01.0.230.09
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.01.8.230.07

Approvals (according to type):

- Rated values: $15 \mathrm{~A}-250 \mathrm{~V}$ (10 A max for each contact circuit)
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Relay type	$\mathbf{5 6 . 3 2}$	$\mathbf{5 6 . 3 4}$		
Colour	BLUE	BLACK	BLUE	BLACK
P.C.B. socket retaining clip 094.51 supplied with socket packaging code SMA	96.12	96.12 .0	96.14	96.14 .0
Metal retaining clip	094.51			

96.12

96.14

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.

Code options according to the last three letters:

-8-11 pin plug-in
AC or DC coils

- Lockable test button with mechanical flag indicator
- Bifurcated contact option

Sockets and accessories: see 90, 99 and 86 series
60.12

60.12-0200

60.13

60 Series - General purpose relays 10 A

- 8-11 pin plug-in

AC or DC coils
Lockable test button with mechanical flag indicator
Bifurcated contact option
Sockets and accessories: see 90, 99 and 86 series

* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications

Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load in AC1
Rated load in AC15 (230 V AC)
Single phase motor rating (230 VAC)
Breaking capacity in DC1: 30/110/220 V A
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material

Coil specifications

Nominal voltage $\left(U_{N}\right) \quad \operatorname{VAC}(50 / 60 \mathrm{~Hz})$

	V DC
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / W$

Operating range DC
Holding voltage AC/DC
Must drop-out voltage AC/DC
Technical data
Mechanical life AC/DC cycles

Electrical life at rated load AC1 r	
Operate/release time	ms

Insulation according to EN 61810-1 ed. 2
Insulation between coil and contacts (1.2/50 ss) kV
Dielectric strength between open contacts VAC
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Environmental protection

Approvals (according to type):

A	

N
60.13-0200

60.62
60.63

- 3 pole
- Faston $187(4.8 \times 0.8 \mathrm{~mm})$ with flange mount

$A-B$

ORDERING INFORMATION
Example: a 60 series plug-in relay, 3 CO (3PDT) with coil rated $12 \mathrm{~V} D C$, test button and mechanical indicator.

Preferred versions

	coil version	A	B	C	D
$60.12 / 13$	AC/DC	0	0	4	0
$60.62 / 63$	AC/DC	0	0	0	0

All versions

	coil version	A	B	C	(
$60.12 / 13$	AC	$0-2$	0	$0-2-3-4-5$	0
	AC	$0-2$	0	54	$/$
	AC	5	$0-2$	$0-2-3-4-5$	0
	AC	5	$0-2$	54	$/$
	DC	$0-2$	0	$0-2-4-6-7$	0
	DC	$0-2$	0	74	$/$
	DC	5	$0-2$	$0-2-4-6-7$	0
	DC	5	$0-2$	74	$/$
	Current sensing	0	0	4	0
$60.62 / 63$	AC/DC	$0-2-5$	0	0	0

POSSIBLE OPTIONS

LOCKABLE TEST BUTTON AND MECHANICAL FLAG INDICATOR (0040)
The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

ACCESSORIES

Sheet of marker tags for relay types 60.12 and 60.13 (72 tags), $6 \times 12 \mathrm{~mm}$
060.72

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2		insulation rated voltage	V	250	
		rated impulse withstand voltage	kV	4 (2 pole)	3.6 (3 pole)
		pollution degree		3	
		overvoltage category		III	
Dielectric strength between adjacent contacts	V AC	2,000			

ONDUCTED DISTURBANCE IMMUNITY

Burst $(5 \ldots 50) \mathrm{ns}, 5 \mathrm{kHz}$, on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC	ms	2/4	
Vibration resistance (10...55) Hz, max. $\pm 1 \mathrm{~mm}$: NO/NC	g / g	5/3	
Power lost to the environment		2 CO (DPDT)	3 CO (3PDT)
without contact current	W	1.3	1.3
with rated current		2.7	3.4

CONTACT SPECIFICATIONS

F 60

Electrical life vs ACl load.

H 60

Breaking capacity for DCl load.
A - Load applied to 1 contact
B - Load applied to 2 contacts in series
C - Load applied to 3 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

COIL SPECIFICATIONS

DC VERSION DATA

Nominal	Coil code	Operating range		Resistance	Rated coil
U_{N}		$U_{\text {min }}$	$\mathrm{U}_{\max }$	R	I at U_{N}
V		V	V	Ω	mA
6	9.006	4.8	6.6	28	214
12	9.012	9.6	13.2	110	109
24	9.024	19.2	26.4	445	53.9
48	9.048	38.4	52.8	1,770	27.1
60	9.060	48	66	2,760	21.7
110	9.110	88	121	9,420	11.7
125	9.125	100	137.5	12,000	10.4
220	9.220	176	242	37,300	5.8

R 60 DC

Operating range (DC version) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

CURRENT SENSING VERSION

Wiring Diagram

Typical application with current sensing relays.
An open circuit filiment of lamp L1 is detected by the current
sensing relay coil (K1) which causes the back-up safety lamp L2
to be energised, and indication of failure at the control panel via
lamp S 1 .
Example: navigation light.
L1 = Light
L2 = Safety light
Si = Control light
K1 = Relay

AC VERSION DATA

Nominal voltage U_{N} V	Coil code	Operating range		Resistance	
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$	R	I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		V	V	Ω	mA
6	8.006	4.8	6.6	4.6	367
12	8.012	9.6	13.2	19	183
24	8.024	19.2	26.4	74	90
48	8.048	38.4	52.8	290	47
60	8.060	48	66	450	37
110	8.110	88	121	1,600	20
120	8.120	96	132	1,940	18.6
230	8.230	184	253	7,250	10.5
240	8.240	192	264	8,500	9.2
400	8.400	320	440	19,800	6

R 60 AC

Operating range (AC version) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

CURRENT SENSING AC VERSION DATA

Coil code	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	$\mathrm{I}_{\max }(\mathrm{A})$	$\mathrm{R}(\Omega)$
4251	2.1	2.5	3.0	0.05
4181	1.5	1.8	2.2	0.10
4161	1.4	1.6	1.9	0.12
4121	1.0	1.2	1.4	0.22
4101	0.85	1.0	1.2	0.32
4051	0.42	0.5	0.6	1.28
4041	0.34	0.4	0.5	2.00
4031	0.25	0.3	0.4	3.57
4021	0.17	0.2	0.25	8.0
4011	0.085	0.1	0.15	32.1

CURRENT SENSING DC VERSION DATA

Coil code	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	$\mathrm{I}_{\max }(\mathrm{A})$	$\mathrm{R}(\Omega)$
4202	1.7	2.0	2.4	0.15
4182	1.5	1.8	2.2	0.19
4162	1.4	1.6	1.9	0.24
4142	1.2	1.4	1.7	0.31
4122	1.0	1.2	1.4	0.42
4102	0.85	1.0	1.2	0.61
4092	0.8	0.9	1.1	0.75
4062	0.5	0.6	0.7	1.70
4032	0.25	0.3	0.4	6.70
4012	0.085	0.1	0.15	61

Other types of current sensing relays are available on request.

Approvals (according to type):
C \in GOST (1)

Relay type	60.12	60.13		
Colour	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 090.33 supplied with socket packaging code SMA	90.02	90.02 .0	90.03	90.03 .0
Metal retaining clip	090.33			
Identification tag	090.00 .2			
Modules (see table below)	99.02			
Timer module (see table below)	$86.00,86.10,86.20$			
6-way jumper link for 90.02 and 90.03 sockets	090.06			

- Double terminal A1 (for easy start connection)
- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
-(4)나) Screw torque: 0.6 Nm
- Wire strip length: 10 mm

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

FOR 90.02 AND 90.03 SOCKETS:

90.02

90.03

86 Series Module Timers (see technical data pages 150/151/154)
Multi-voltage: (12...240)V AC/DC;

Multi-functions: AI, DI, SW, BE, CE, DE, EE, FE; (0.05s... 100 h)
Mono-function: (12...24)V AC/DC; function Al ; (1.5s...60min)
Mono-function: (12...24)V AC/DC; function DI; (1.5s...60min)
86.00.0.240.0000
86.10.0.024.0000
86.20.0.024.0000

Approvals
(according to type): c $\mathbf{I}_{\text {US }}^{\oplus}$ GOST

99.02 coil indication and EMC suppression modules (see technical data page 209) BLUE*		
Diode** (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
Diode (+A2, non standard polarity)	(6...220)V DC	99.02.2.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode** (+A1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode** (+Al, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Diode (+A2, non standard polarity)	(6...24)V DC	99.02.9.024.79
LED + Diode (+A2, non standard polarity)	(28...60)V DC	99.02.9.060.79
LED + Diode (+A2, non standard polarity)	(110...220)V DC	99.02.9.220.79
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.02.8.230.07

90 Series - Sockets and accessories for 60 series relays

Approvals (according to type):
C \in (B) (1) GOSt

- Rated values: 10 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (2) Screw torque: 0.5 Nm
- Wire strip length: 10 mm
- Max wire size:

Relay type	60.12	60.13		
Colour	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 090.33 supplied with socket packaging code SMA	90.20	90.20 .0	90.21	90.21 .0
Metal retaining clip	090.33			
Modules (see table below)	99.01			

90.20

90.21

FOR 90.20 AND 90.21 SOCKETS:

Approvals (according to type): GOST

* Modules in Black housing are available on request.
**For DC supply, apply the positive to terminal A1.

Green LED is standard Red LED available on request.

99.01 coil indication and EMC suppression modules (see technical data page 209)		BLUE*
Diode** (+A1, standard polarity)	(6..220)V DC	99.01.3.000.00
Diode (+A2, non standard polarity)	(6...220)V DC	99.01.2.000.00
LED	(6...24)V DC/AC	99.01.0.024.59
LED	(28...60)V DC/AC	99.01.0.060.59
LED	(110...240)V DC/AC	99.01.0.230.59
LED + Diode** (+A1, standard polarity)	(6...24)V DC	99.01.9.024.99
LED + Diode** (+A1, standard polarity)	(28...60)V DC	99.01.9.060.99
LED + Diode** (+A1, standard polarity)	(110...220)V DC	99.01.9.220.99
LED + Diode (+A2, non standard polarity)	(6...24)V DC	99.01.9.024.79
LED + Diode (+A2, non standard polarity)	(28...60)V DC	99.01.9.060.79
LED + Diode (+A2, non standard polarity)	(110...220)V DC	99.01.9.220.79
LED + Varistor	(6...24)V DC/AC	99.01.0.024.98
LED + Varistor	(28...60)V DC/AC	99.01.0.060.98
LED + Varistor	(110...240)V DC/AC	99.01.0.230.98
RC circuit	(6...24)V DC/AC	99.01.0.024.09
RC circuit	(28...60)V DC/AC	99.01.0.060.09
RC circuit	(110...240)V DC/AC	99.01.0.230.09
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.01.8.230.07

Approvals (according to type):

C $€$ (8) © © Gost cisis

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Relay type	60.12	60.13
Colour	BLUE	BLUE
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount (retaining clip 090.33 supplied with socket packaging code SMA	90.22	90.23
Metal retaining clip		090.33

-(4) Screw torque: 0.5 Nm

- Wire strip length: 7 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 6 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 10 / 2 \times 14$

Approvals (according to type):

- Rated values: 10 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
-(가) Screw torque: 0.8 Nm
- Wire strip length: 10 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 4 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 12 / 2 \times 14$	$1 \times 12 / 2 \times 14$

Relay type	$\mathbf{6 0 . 1 2}$	$\mathbf{6 0 . 1 3}$		
Colour	BLUE	BLACK	BLUE	BLACK
Screw terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 090.33 supplied with socket packaging code SMA	90.26	90.26 .0	90.27	90.27 .0
Metal retaining clip		090.33		

Relay type	60.12	60.13
Colour	BLACK	BLACK
Flange mount solder socket mount with M3 screw	90.12	90.13

Approvals (according to type):
C \in (B) GOST @ $\Leftrightarrow{ }^{\circ}$

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$

Relay type		60.12	$\mathbf{6 0 . 1 3}$
P.C.B. socket	BLUE	90.14	90.15
	BLUE	$90.14 .1(\varnothing 17.5 \mathrm{~mm})$	$90.15 .1(\varnothing 19 \mathrm{~mm})$

- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

90.14
90.15

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

- Plug-in or P.C.B. versions
- AC or DC coils
- 3 mm gap between open contacts on NO (nPST-NO) option
$.8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu s)$ between coil and contacts (internal distance)
- Option with coil to contacts SELV insulation - Sockets and accessories: see 92,99 and 86 series
* With the AgSnO_{2} material the maximum peak current is $100 \mathrm{~A}-5 \mathrm{~ms}$ on NO contact.

Contact specifications

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in ACl VA

Rated load in AC 15 (230 V AC)	VA
Motor rating $(230 / 400 \mathrm{~V} \mathrm{AC})$	kW

Breaking capacity in $\mathrm{DC1}: 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
Coil specifications

| Nominal voltage (UN) | V AC $(50 / 60 \mathrm{~Hz})$ |
| :--- | ---: | ---: |
| | V DC |
| Rated power AC/DC | $\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$ |
| Operating range | AC |
| | DC |
| Holding voltage | $\mathrm{AC} / \mathrm{DC}$ |
| Must drop-out voltage | $\mathrm{AC} / \mathrm{DC}$ |
| Technical data | |
| Mechanical life AC/DC | cycles |
| Electrical life at rated load AC1 | cycles |
| Operate/release time | ms |
| Insulation according to EN 61810-1 ed. 2 | |
| Insulation between coil and contacts (1.2/50 ps) | kV |
| Dielectric strength between open contacts | V AC |
| Ambient temperature range | ${ }^{\circ} \mathrm{C}$ |
| Environmental protection | |

Approvals (according to type):
62.22

62.23
62.32

Plug-in or P.C.B. versions
AC or DC coils

- 3 mm gap between open contacts on NO (nPST-NO) option
$8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts (internal distance)
- Option with coil to contacts SELV insulation - Sockets and accessories: see 92, 99 and 86 series
* With the AgSnO_{2} material the maximum peak current is $100 \mathrm{~A}-5 \mathrm{~ms}$ on NO contact.

Contact specifications

Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load in AC1
Rated load in AC15 (230 V AC)
Motor rating (230/400 V AC)
Breaking capacity in DC 1: 30/110/220 V A
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Coil specifications
Nominal voltage $\left(\mathrm{U}_{\mathrm{N}}\right) \quad$ V AC $(50 / 60 \mathrm{~Hz})$

V DC
Rated power AC/DC

Operating range

DC
Holding voltage $\quad \mathrm{AC} / \mathrm{DC}$
Must drop-out voltage AC/DC

Technical data

Mechanical life AC/DC cycles

Electrical life at rated load AC1 cycles
Operate/release time ms

Insulation according to EN 61810-1 ed. 2
Insulation between coil and contacts (1.2/50 ss) kV
Dielectric strength between open contacts VAC
Ambient temperature range
Environmental protection
Approvals (according to type):
62.33

- 3 pole - Faston 187 ($4.8 \times 0.5 \mathrm{~mm}$) - Plug-in use 92 series socket	- 2 pole - Faston 250 ($6.3 \times 0.8 \mathrm{~mm}$) with rear flange mount	- 3 pole - Faston 250 ($6.3 \times 0.8 \mathrm{~mm}$) with rear flange mount
3 CO (3PDT)	2 CO (DPDT)	3 CO (3PDT)
16/30*	16/30*	16/30*
250/400	250/400	250/400
4,000	4,000	4,000
750	750	750
0.8/1.5	0.8/-	0.8/1.5
16/0.6/0.4	16/0.6/0.4	16/0.6/0.4
1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
AgCdO	AgCdO	AgCdO
6-12-24-48-60-110-120-230-240-400		
6-12-24-48-60-110-125-220		
2.2/1.3	2.2/1.3	2.2/1.3
(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
$0.8 U_{N} / 0.6 U_{N}$	$0.8 U_{N} / 0.6 U_{N}$	$0.8 U_{N} / 0.6 U_{N}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$10 \cdot 10^{6} / 30 \cdot 10^{6}$	$10 \cdot 10^{6} / 30 \cdot 10^{6}$	$10 \cdot 10^{6} / 30 \cdot 10^{6}$
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
10/10	10/10	10/10
$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
6	6	6
1,500	1,500	1,500
$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
RT I	RT I	RT I
CEABS (B) GOST (1) IRAm		

Plug-in or P.C.B. versions

- AC or DC coils
- 3 mm gap between open contacts on NO (nPST-NO) option
$.8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts (internal distance)
- Option with coil to contacts SELV insulation - Sockets and accessories: see 92,99 and 86 series
*Distance between contacts $\geq 3 \mathrm{~mm}$ (EN 60335-1).
** With the AgSnO_{2} material the maximum peak current is $100 \mathrm{~A}-5 \mathrm{~ms}$ on NO contact.

Contact specifications

Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage VAC
Rated load in ACl
Rated load in AC15 (230 V AC)

Motor rating (230/400 V AC)	kW
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V}$	A
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specifications

Nominal voltage (U_{N})	V AC ($50 / 60 \mathrm{~Hz}$)
	V DC
Rated power AC/DC	VA (50 Hz)/W
Operating range	AC
	DC
Holding voltage	AC/DC
Must drop-out voltage	AC/DC
Technical data	
Mechanical life AC/DC	cycles
Electrical life at rated load AC	cycles
Operate/release time	ms
Insulation according to EN 61810-1 ed. 2	
Insulation between coil and contacts (1.2/50 $\mathrm{\mu s}$) kV	
Dielectric strength between open contacts VAC	
Ambient temperature range	${ }^{\circ} \mathrm{C}$
Environmental protection	

Approvals (according to type):
62.22-0300

2 NO (DPST-NO) 3 mm*

	2 NO (DPST-NO) 3 mm
A	$16 / 30^{* *}$
VA	$250 / 400$
A	4,000
A	750
A	$0.8 /-$
A$)$	$16 / 1.1 / 0.7$
	AgCdO

62 Series - Power relays 16 A

- Plug-in or P.C.B. versions
- AC or DC coils
- 3 mm gap between open contacts on NO (nPST-NO) option
$8 \mathrm{~mm}, 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts (internal distance)
- Option with coil to contacts SELV insulation Sockets and accessories: see 92, 99 and 86 series
62.33-0300

62.82-0300

62.83-0300

*Distance between contacts $\geq 3 \mathrm{~mm}$ (EN 60335-1).
** With the AgSnO_{2} material the maximum peak current is $100 \mathrm{~A}-5 \mathrm{~ms}$ on NO contact.

Contact specifications

Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load in ACl
Rated load in AC15 (230 V AC)
Motor rating (230/400 V AC)
Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V}$ A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Coil specifications
Nominal voltage $\left(U_{N}\right) \quad V \operatorname{AC}(50 / 60 \mathrm{~Hz})$

V DC
Rated power AC/DC VA $(50 \mathrm{~Hz}) /$ W

Operating range $\quad \mathrm{AC}$

	DC
Holding voltage	AC/DC
Must	

Must drop-out voltage	AC/DC
Technical data	

Mechanical life AC/DC cycles

Electrical life at rated load AC1	cycles
Operate/release time	ms

Insulation according to EN 61810-1 ed. 2
Insulation between coil and contacts (1.2/50 ss) kV
Dielectric strength between open contacts V AC
Ambient temperature range ${ }^{\circ} \mathrm{C}$

Environmental protection
Approvals (according to type):

ORDERING INFORMATION
Example: a 62 series power relay + FASTON $250(6.3 \times 0.8 \mathrm{~mm})$, rear flange mount with 2 NO (DPST-NO) contacts, coil rated at 12 V DC.

Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
$62.22 / 23$	AC-DC	0	0	0	0
$62.32 / 33$	AC-DC	0	0	4	0
$62.82 / 83$	AC-DC	0	0	0	0

All versions

	coil version	A	B	C	D
$62.22 / 23$	AC-DC	$0-4$	$0-3-5-6$	0	0
$62.32 / 33$	AC-DC	$0-4$	$0-3-5-6$	0	$0-5-6-7-8$
	AC-DC	$0-4$	5	$2-4$	$0-6-8$
	AC	$0-4$	0	$2-3-4-5$	$0-6-8$
	AC	$0-4$	3	3	$0-6-8$
	AC	$0-4$	0	54	$/$
	DC	$0-4$	0	$6-6-7$	$0-6-8$
	DC	$0-4$	3	6	$0-6-8$
	DC	$0-4$	0	$2-4$	$0-3-4$

POSSIBLE OPTIONS

Option $=0500$ and 0600
COIL TO CONTACTS
PHYSICAL SEPARATOR FOR
SELV APPLICATIONS

Option = 0007
TOP 35mm RAIL MOUNT

LOCKABLE TEST BUTTON AND MECHANICAL FLAG INDICATOR (0040)
The dual-purpose Finder test button can be used in two ways:
Case 1) The plastic pip (located directly above the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.
Case 2) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

ACCESSORIES

Mounting adaptor for types 62.3 x and $62.8 \mathrm{x} . \mathrm{xxxx.x} \mathrm{\times x9}$ (M4)

| Flange mounting adaptor for types $62.3 x$ and $62.8 x . x x x x . x x x 9$ | 062.60 |
| :--- | :--- | :--- |

Sheet of marker tags for 62 series relays $(72$ tags), $6 \times 12 \mathrm{~mm}$	060.72

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	400
	rated impulse withstand voltage kV	4	
	pollution degree	3	
	overvoltage category	III	
Dielectric strength between adjacent contacts	2,500		

CONDUCTED DISTURBANCE IMMUNITY

Burst $(5 \ldots 50) \mathrm{ns}, 5 \mathrm{kHz}$, on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s})$ on A1 - A2 (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$

OTHER DATA

CONTACT SPECIFICATIONS

F 62

Electrical life vs ACl load.

H 62 (CO/nPDT)

Breaking capacity for DC1 load.
A - Load applied to 1 contact
B - Load applied to 2 contacts in series
C - Load applied to 3 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

H 62 (NO/nPST-NO)

Breaking capacity for DC1 load.
A - Load applied to 1 contact
B - Load applied to 2 contacts in series
C - Load applied to 3 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

COIL SPECIFICATIONS

DC VERSION DATA

$\left.$| Nominal
 voltage
 U_{N} | Coil
 code | Operating range | | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | | Rated coil |
| :---: |
| consumption | \right\rvert\,

DC (NO/nPST-NO) VERSION DATA ($\geq 3 \mathrm{~mm}$)

	Coil	Operating range		Resistance	Rated coil
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	I at U_{N}
V		V	V	Ω	mA
6	9.006	5.1	6.6	12	500
12	9.012	10.2	13.2	48	250
24	9.024	20.4	26.4	192	125
48	9.048	40.8	52.8	770	63
60	9.060	51	66	1,200	50
110	9.110	93.5	121	4,200	26
125	9.125	106.2	137.5	5,200	24
220	9.220	187	242	17,600	12.5

R 62 DC

R 62 DC (NO/nPST-NO)

Operating range (DC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

AC VERSION DATA

$\left.$| Nominal
 voltage
 U_{N} | Coil
 code | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | | Rated coil |
| :---: |
| consumption | \right\rvert\,

AC (NO/nPST-NO) VERSION DATA $(\geq 3 \mathrm{~mm})$

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | ---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption

\mathrm{V}\end{array}\right)\)

R 62 AC

R 62 AC (NO/nPST-NO)

Operating range (AC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

Approvals (according to type):

(\in © ${ }^{\text {GOST }}$
 $\mathrm{c} \mathrm{mL}_{\mathrm{us}}^{\circ}$

- Rated values: 16 A - 250 V
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
-(?) Screw torque: 0.8 Nm
- Wire strip length: 10 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 10 / 2 \times 4$	$1 \times 6 / 2 \times 4$
AWG	$1 \times 8 / 2 \times 12$	$1 \times 10 / 2 \times 12$

Relay type	$\mathbf{6 2 . 3 2 , 6 2 . 3 3}$	
Colour	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 092.71 supplied with socket packaging code SMA	92.03	92.03 .0
Metal retaining clip	092.71	
ldentification tag	090.00 .2	
Modules (see table below)	99.02	
Timer modules (see table below)	$86.00,86.10,86.20$	

FOR 92.03 SOCKET:

86 Series Module Timers (see technical data pages 150/151/154)
Multi-voltage: (12...240)V AC/DC;

| Multi-functions: $\mathrm{Al}, \mathrm{DI}, \mathrm{SW}, \mathrm{BE}, \mathrm{CE}, \mathrm{DE}, \mathrm{EE}, \mathrm{FE} ;(0.05 \mathrm{~s} . .100 \mathrm{~h})$ | 86.00 .0 .240 .0000 |
| :--- | :--- | :--- |
| Mono-function: (12..24)V AC/DC; function AI; (1.5s..60min) | 86.10 .0 .024 .0000 |
| Mono-function: (12..24)V AC/DC; function DI; (1.5s...60min) | 86.20 .0 .024 .0000 |

Approvals
(according to type): cTI US GOST

Approvals (according to type):

GOST c ${ }^{7 \mathbf{I}^{\oplus}}{ }_{\text {US }}$

* Modules in Black housing are available on request.
**For DC supply, apply the positive to terminal A1.

99.02 coil indication and EMC suppression modules (see technical data page 209)		BLUE*
Diode** (+A1, standard polarity)	(6...220)V DC	99.02.3.000.00
Diode (+A2, non standard polarity)	(6...220)V DC	99.02.2.000.00
LED	(6...24)V DC/AC	99.02.0.024.59
LED	(28...60)V DC/AC	99.02.0.060.59
LED	(110...240)V DC/AC	99.02.0.230.59
LED + Diode** + A 1, standard polarity)	(6...24)V DC	99.02.9.024.99
LED + Diode** + A 1, standard polarity)	(28...60)V DC	99.02.9.060.99
LED + Diode** + A 1, standard polarity)	(110...220)V DC	99.02.9.220.99
LED + Diode (+A2, non standard polarity)	(6...24)V DC	99.02.9.024.79
LED + Diode (+A2, non standard polarity)	(28...60)V DC	99.02.9.060.79
LED + Diode (+A2, non standard polarity)	(110...220)V DC	99.02.9.220.79
LED + Varistor	(6...24)V DC/AC	99.02.0.024.98
LED + Varistor	(28...60)V DC/AC	99.02.0.060.98
LED + Varistor	(110...240)V DC/AC	99.02.0.230.98
RC circuit	(6...24)V DC/AC	99.02.0.024.09
RC circuit	(28...60)V DC/AC	99.02.0.060.09
RC circuit	(110...240)V DC/AC	99.02.0.230.09
Residual current by-pass ($62 \mathrm{k} \Omega / 1 \mathrm{~W}$)	(110...240)V AC	99.02.8.230.07

Approvals (according to type):

- Rated values: 16 A - 250 V
(10 A max for each contact circuit)
- Dielectric strength: $\geq 2.5 \mathrm{kV} \mathrm{AC}$
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Relay type	62.32, 62.33	
Colour	BLUE	BLACK
P.C.B. socket retaining clip 092.54 supplied with socket packaging code SMA	92.13	92.13 .0
Metal retaining clip		092.54

Relay type	$\mathbf{6 2 . 3 2 , 6 2 . 3 3}$
Colour	BLUE
Panel mount solder socket: mounted with M3 screw retaining clip 092.54 supplied with socket packaging code SMA	92.33
Metal retaining clip	092.54

Approvals
(according to type):

- Rated values: 16 A - 250 V
(10 A max for each contact circuit)
- Dielectric strength: $\geq 2.5 \mathrm{kV} \mathrm{AC}$
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

PACKAGING CODES

How to code and identify retaining clip and packaging options for sockets.
Code options according to the last three letters:

	65.31	65.61
- P.C.B. or flange mount - AC or DC coils		
	- 1NO+1NC (SPST-NO+SPST-NC) - Flange mount - Faston $250(6.3 \times 0.8 \mathrm{~mm})$	- 1NO+1NC (SPST-NO+SPST-NC) - P.C.B. mounting - Bifurcated terminals
*With the AgSnO_{2} material the maximum peak current is $100 \mathrm{~A}-5 \mathrm{~ms}$ on NO contact. **For 400 V applications, where requirements for pollution degree 2 are met.		Copper side view $\mathrm{h}=46 \mathrm{~mm}$
Contact specifications		
Contact configuration	$1 \mathrm{NO}+1 \mathrm{NC}($ (SPST-NO+SPST-NC)	$1 \mathrm{NO}+1 \mathrm{NC}($ SPST-NO+SPST-NC)
Rated current/Maximum peak current A	20/40*	20/40*
Rated voltage/Maximum switching voltage V AC	250/400**	250/400**
Rated load in ACl VA	5,000	5,000
Rated load in AC15 (230 V AC) VA	1,000	1,000
Single phase motor rating (230 V AC) kW	1.1	1.1
Breaking capacity in DC1: 30/110/220 V A	20/0.8/0.5	20/0.8/0.5
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgCdO	AgCdO
Coil specifications		
Nominal voltage (U_{N}) V AC ($50 / 60 \mathrm{~Hz}$)	6-12-24-48-60-110-120-230-240-400	
V DC	6-12-24-48-60-110-125-220	
Rated power AC/DC VA (50 Hz)/W	2.2/1.3	2.2/1.3
Operating rangeAC 	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$
	$(0.85 \ldots 1.1) U_{N}$	(0.85...1.1) U_{N}
Holding voltage AC/DC	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.6 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/DC cycles	$10 \cdot 10^{6} / 30 \cdot 10^{6}$	$10 \cdot 10^{6} / 30 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$80 \cdot 10^{3}$	$80 \cdot 10^{3}$
Operate/release time ms	10/12	10/12
Insulation according to EN 61810-1 ed. 2	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	4	4
Dielectric strength between open contacts V AC	1,500	1,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-40...+75	-40...+75
Environmental protection	RT I	RT I
Approvals (according to type):		

- P.C.B. or flange mount
- AC or DC coils
- 3 mm gap between open contacts on NO (SPST-NO) version
65.31-0300

* Distance between contacts $\geq 3 \mathrm{~mm}$ (EN 60335-1).
** With the AgSnO_{2} material the maximum peak current is $100 \mathrm{~A}-5 \mathrm{~ms}$ on NO contact.
***For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load in ACl
Rated load in AC15 (230 V AC)
Single phase motor rating (230 V AC) kW
Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Coil specifications

Nominal voltage (U_{N})	6-12-24-48-60-110-120-230-240-400	
	6-12-24-48-60-110-125-220	
Rated power AC/DC VA (50 Hz)/W	2.2/1.3	2.2/1.3
Operating range	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
	$(0.85 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
Holding voltage AC/DC	$0.8 U_{N} / 0.6 U_{N}$	$0.8 U_{N} / 0.6 U_{N}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/DC cycles	$10 \cdot 10^{6} / 30 \cdot 10^{6}$	$10 \cdot 10 \% / 30 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
Operate/release time ms	15/4	15/4
Insulation according to EN 61810-1 ed. 2	$4 \mathrm{kV} / 3$	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	4	4
Dielectric strength between open contacts V AC	2,500	2,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+75$	$-40 \ldots+75$
Environmental protection	RT I	RT I
Approvals (according to type):		

ORDERING INFORMATION
Example: a 65 series power relay, for P.C.B. with bifurcated terminals, $1 \mathrm{NC}+1 \mathrm{NO}$ (SPST-NO + SPST-NC) contact with a 12 V DC coil.

Coil version

$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=D C$
Coil voltage
see coil specifications

Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
65.31	AC-DC	0	0	0	0
65.61	AC-DC	0	0	0	0

All versions					
65.31	coil version	A	B	C	DC
65.61	AC-DC	$0-4$	$0-4$	$0-3$	0
$0-5-7-8$					

POSSIBLE OPTIONS

Option $=0005$
TOP FLANGE MOUNT

Option $=0008$
REAR 35 mm RAIL MOUNT

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	250
	rated impulse withstand voltage	kV	4
	pollution degree		3
	overvoltage category	III	

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC	ms	5/6 (for 1NO+1NC or SPST-NO+SPST-NC)	7/- (for NO or SPST-NO)
Vibration resistance (10..55) Hz, max. $\pm 1 \mathrm{~mm}$: NO/NC	g / g	10/4	
Power lost to the environment		$1 \mathrm{NO}+1 \mathrm{NC}$ (SPST-NO+SPST-NC)	1 NO (SPST-NO)
without contact current		1.3	1.3
with rated current		2.1	3.1
Recommended distance between relays mounted on P.C.B.s	mm	≥ 5	

CONTACT SPECIFICATIONS

F 65

Electrical life vs ACl load.

COIL SPECIFICATIONS

DC VERSION DATA

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption\end{array}\right]\)

R 65 DC

Operating range (DC type) vs ambient temperature.
1-Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

H 65

Breaking capacity for DC1 load.
Load applied to 1 contact
A-1 NO + 1 NC type
B-1 NO type

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

AC VERSION DATA

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | Operating range | | Resistance |
| :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption\end{array}\right]\)

R 65 AC

[^5]1-Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.
66.22
66.82

- P.C.B. or top flange mount with Faston 250 - AC or DC coil versions

Double insulation between coil and contacts according to EN 60335-1 (VDE 0700), with safe separation and 8 mm clearance and creepage distance

P.C.B. or top flange mount with Faston 250 $A C$ or $D C$ coil versions

- Double insulation between coil and contacts according to EN 60335-1 (VDE 0700), with safe separation and 8 mm clearance and creepage distance
66.22-0300

6-12-24-110/115-120/125-230-240 6-12-24-110-125

Rated power AC/DC VA (50 Hz)/W	3.6/1.7	3.6/1.7
Operating range AC	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
DC	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
Holding voltage AC/DC	$0.8 U_{N} / 0.5 U_{N}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
Must drop-out voltage AC/DC	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
Technical data		
Mechanical life AC/DC cycles	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Operate/release time ms	8/10	8/10
Insulation according to EN 61810-1 ed. 2	6-4 kV/3	6-4 kV/3
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	6 (8 mm)	6 (8 mm)
Dielectric strength between open contacts V AC	1,500	1,500
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$	$-40 \ldots+70$
Environmental protection	RT II	RT II
Approvals (according to type):	$C E$	

93

ORDERING INFORMATION

Example: a 66 series relay, Faston $250(6.3 \times 0.8 \mathrm{~mm})$ with top flange mount, 2 CO (DPDT) contacts 30 A , with a 24 V DC coil.

$2=2 \mathrm{CO}$ (DPDT) 30 A
Coil version
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=D C$
Coil voltage
see coil specifications

Only combinations in the same row are possible
Preferred versions

	coil version	A	B	C	D
62.22	AC-DC	0	0	0	1
62.82	AC-DC	0	0	0	0

All versions

	coil version	A	B	C	D
62.22	AC-DC	0	$0-3$	0	1
62.82	AC-DC	0	$0-3$	0	$0-7$

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2	insulation rated voltage	V	440
	rated impulse withstand voltage	kV	4
	pollution degree	3	
	overvoltage category	III	
Dielectric strength between adjacent contacts	V AC	2,500	

CONDUCTED DISTURBANCE IMMUNITY

Burst $(5 \ldots 50) \mathrm{ns}, 5 \mathrm{kHz}$, on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1-A2 (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$

OTHER DATA

Bounce time: $\mathrm{NO} / \mathrm{NC}$	ms	$7 / 10$
Power lost to the environment	without contact current	W
	2.3	
Recommended distance between relays mounted on P.C.B.s	mm	20

CONTACT SPECIFICATIONS

F 66

Electrical life vs AC1 load.

H 66

Breaking capacity for DC1 load and DC13 (L/R=100ms).

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

COIL SPECIFICATIONS
DC VERSION DATA

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
6	9.006	4.8	6.6	21	283
12	9.012	9.6	13.2	85	141
24	9.024	19.2	26.4	340	70.5
110	9.110	88	121	7,000	15.7
125	9.125	100	137.5	9,200	13.6

AC VERSION DATA

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption $\text { I at } \mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$U_{\text {min }}$	$U_{\text {max }}$		
		V	V	Ω	mA
6	8.006	4.8	6.6	3	600
12	8.012	9.6	13.2	11	300
24	8.024	19.2	26.4	50	150
110/115	8.110	88	126	930	32.6
120/125	8.120	96	137	1,050	30
230	8.230	184	253	4,000	15.7
240	8.240	192	264	5,500	15

R 66 AC

Operating range (AC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

Operating range (DC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.
19.21

- 3 functions selector switch:
- Auto (works as a monostable relay)
- Off (relay permanently OFF)

On (relay permanently ON)

- AC/DC universal operation
- LED indicator
- 35 mm rail (EN 50022) mount
- Insulation between supply and contact terminals

Contact specifications	
Contact configuration	1 CO (SPDT)
Rated current/Max. peak current A	10/15
Rated voltage/Max. switching voltage V AC	250/400
Rated load in AC1 VA	2,500
Rated load in AC15 (230 V AC) VA	500
Single phase motor rating (230 V AC) kW	0.44
Breaking capacity in DC1: 30/110/220 V A	10/0.3/0.12
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)
Standard contact material	AgCdO
Supply specifications	
Nominal voltage V AC (50/60 Hz)	24
V DC	24
Rated power AC/DC VA (50 Hz)/W	0.6/0.4
Operating range V AC	$(0.8 \ldots 1.1) U_{N}$
V DC	$(0.8 \ldots 1.1) U_{N}$
Technical data	
Mechanical life cycles	$10 \cdot 10^{6}$
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	4
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Protection category	IP 20
Approvals (according to type):	C GOST

ORDERING INFORMATION
Example: a 19 series relay modular Auto-Off-On with 1 CO (SPDT) 10 A contact, rated at 24 V AC/DC supply.

TECHNICAL DATA

CONTACT SPECIFICATIONS

Nominal rate lamps - incandescent $(230 ~ V)$ - compensated fluorescent $(230 \mathrm{~V})$	W	1,000
- uncompensated fluorescent $(230 \mathrm{~V}) \mathrm{W}$	500	
- halogen $(230 \mathrm{~V})$	W	1,000

INSULATION

Dielectric strength		
- between supply and contacts	V AC	3,000
- between open contacts	V AC	1,000

OTHER DATA

Power lost to the environment - without contact current		0.4	
- with rated current	W	1.8	
Max wire size		solid cable	stranded cable
	mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 1.5$
	AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 16$
(4) Screw torque	Nm	0.5	

WIRING DIAGRAM

SELECTOR POSITION

Selector switch	Control switch (S)	Output relay	LED	B1-B2 contact
AUTO	Closed	ON	ON	Closed
	Open	OFF	OFF	Closed
ON	-	ON	ON	Open
OFF	-	OFF	OFF	Open

The B1-B2 contact signals when the selector switch is in the Auto position.
The LED indicates the state of the Modular relay's output contacts.

The max switching voltage between B_{1} and B_{2} terminal is $24 \mathrm{~V} \mathrm{AC/DC}(300 \mathrm{~mA})$.

ACCESSORIES

Relay interface modules for use with PLC systems, 6.2 mm wide - Sensitive DC coil or AC/DC coil version Supplied with integral coil indication and protection circuit

- Instant removal of relay using plastic retaining clip 35 mm rail (EN 50022) mounting
 pollution degree 2 are met.
Contact specifications
Contact configuration

Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load in AC1
Rated load in AC15 (230 V AC) VA
Single phase motor rating (230 V AC) kW

Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$	
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
 Coil specifications

Nominal voltage (U_{N})
Rated power AC/DC
Operating range

Holding voltage
Must drop-out
Technical data
Mechanical life AC/DC cycles

Electrical life at rated load ACl	cycles
Operate/release time	ms

Insulation according to EN 61810-1 ed. 2
Insulation between coil and contacts (1.2/50 μs) kV
Dielectric strength between open contacts VAC
Ambient temperature range ($\leq 60 \mathrm{~V} / \geq 60 \mathrm{~V}$) ${ }^{\circ} \mathrm{C}$

Protection category

Approvals relay (according to type):
38.51

38.61

38.51 .3 / 38.61.3

38 Series - Relay interface modules 0.1-2-6 A
38.81/38.91

- Relay interface modules for use with

PLC systems, 6.2 mm wide

- Sensitive DC coil or AC/DC coil version - Supplied with integral coil indication and protection circuit
- Instant removal of relay using plastic retaining clip
- 35 mm rail (EN 50022) mounting

38.81

Output circuit

Rated current/Maximum peak current (10 ms) A	2/20	0.1/0.5	2/40	2/20	0.1/0.5	2/40
Rated voltage/Maximum blocking voltage V	24/33 DC	48/60 DC	240/275 AC	24/33 DC	48/60 DC	240/275 AC
Switching voltage range V	(1.5...24)DC	(1.5...48)DC	(12...240)AC	(1.5...24)DC	(1.5...48)DC	(24...240)AC
Minimum switching current mA	1	0.05	22	1	0.05	22
Max "OFF-state" leakage current $\quad \mu \mathrm{A}$	0.001	0.001	1.5	0.001	0.001	1.5
Max "ON-state" voltage drop V	0.12	1	1.6	0.12	1	1.6
Input circuit						
Nominal voltage V		24-60 DC		1120...	5)AC/DC -	...240)AC
Operating range V DC	24 V : (16.8... 3)V -60V:	5.6...62)V	125 V : $(94 . . .138)$	V - 240	184...264)V
Control current mA	$24 \mathrm{~V}: 7 \mathrm{~mA}$	-60V:		$125 \mathrm{~V}: 8 \mathrm{~mA}$	- 240	7 mA
Release voltage V DC	24 V : 10 V DC	-60V:	0 V DC	125 V : 44 V AC	- 240 V	72 V AC
Impedance $\quad \Omega$	24 V : 3.200	-60V:	,300		-	
Technical data						
Operate/release time $\mu \mathrm{s}$	0.1/0.4	0.02/0.11	12/12	0.1/0.4	0.02/0.11	12/12
Dielectric strength between input/output V		2,500			2,500	
Ambient temperature range ${ }^{\circ} \mathrm{C}$		$-20 \ldots+55$			$-20 \ldots+55$	
Environmental protection		IP20			IP20	
Approvals (according to type):	$c \mathbb{N}_{\text {US }}^{\infty}$					

ORDERING INFORMATION

ELECTROMECHANICAL RELAY (EMR)
Example: a 38 series relay interface module with 1 CO (SPDT) contact, with coil rated at 12 V DC.

for (110...125)V AC/DC - (230...240)V AC only
7 = Sensitive DC

Coil voltage

see coil specifications

SOLID STATE RELAY (SSR)

Example: a 38 series SSR relay interface module with 2 A, with 24 V DC supply.
ype
$8=$ SSR relay, with screw terminal

9 = SSR relay, with screwless terminal
Output
1 = 1 NO (SPST-NO)
Supply version
3 = Leakage current suppression for (110...125)V AC/DC and (230...240)V AC only 7 = DC

Supply voltage
see input specifications
The 38 Series interface modules (supply version 3) have built-in leakage current suppression to address industry concerns of the contacts not dropping-out when there is residual current in the circuit; at (110..125)V AC and (230..240)V AC.
This problem can occur, for example, when connecting the interface modules to PLC, s with triac outputs or when connecting via relatively long cables.

ELECTROMECHANICAL REIAY

TECHNICAL DATA

INSULATION

| Insulation according to EN 61810-1 ed. 2 | insulation rated voltage | V | 250 |
| :--- | :--- | :--- | :--- | :--- |
| | rated impulse withstand voltage | kV | 4 |
| | pollution degree | 3 | |
| | overvoltage category | III | |

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz, on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge $(1.2 / 50 \mu \mathrm{~s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV})$

OTHER DATA

CONTACT SPECIFICATIONS

F 38

Electrical life vs AC1 load.

H 38

Breaking capacity in DC1 load.

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC 13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load. Note: the release time of load will be increase.

ELECTROMECHANICAL REIAY

COIL SPECIFICATIONS

AC/DC VERSION DATA

Nominal voltage U_{N}	$\begin{aligned} & \text { Coil } \\ & \text { code } \end{aligned}$	Operating range		Rated coil consumption I at U_{N}	Power consumption P at U_{N} W
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	mA	
12	0.012	9.8	13.2	16	0.2
24	0.024	19.2	26.4	12	0.2
48	0.048	38.4	52.8	6.9	0.3
60	0.060	48	66	7	0.5
110... 125	0.125	88	138	5(*)	0.61*)
220... 240	0.240	184	264	4(*)	0.9(*)

(*) Rated coil consumption and power consumption values relate to
$\mathrm{U}_{\mathrm{N}}=125$ and 240 V .

DC VERSION DATA (sensitive)

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption I at U_{N}	Power consumption P at U_{N}
V		V	V	mA	W
6	7.006	5	7.2	35	0.2
12	7.012	9.8	14.4	15.2	0.2
24	7.024	18.2	28.8	10.4	0.3
48	7.048	35	57.6	6.3	0.3
60	7.060	43.5	72	7	0.4

TYPE 38.51.3/38.61.3 DATA

Nominal voltage U_{N}	$\begin{gathered} \text { Coil } \\ \text { code } \end{gathered}$	Operating range		Mustdrop out U	Rated coil consumption I at U_{N}	Power consumption P at U_{N}
V		,	V		mA	W
(110...125) AC/DC	3.125	94	138	44	8(*)	1(*)
(230...240) AC	3.240	184	264	92	7(*)	0.5(*)

(*) Rated coil consumption and power consumption values relate to $\mathrm{U}_{\mathrm{N}}=125$ and 240 V .

R 38

Operating range Vs ambient temperature.
1 - Max coil voltage permitted at nominal load ($\leq 60 \mathrm{~V}$ versions).
2 - Max coil voltage permitted at nominal load ($\geq 60 \mathrm{~V}$ versions).
3 - Min pick-up voltage with coil at ambient temperature.

SOLID STATE RELAY

TECHNICAL DATA

OTHER DATA

Power lost to the environment	without contact current W	0.17			
	with rated current W	0.4			
Wire strip length	mm	10			
		38.81		38.91	
\bigcirc Screw torque	Nm	0.5		-	
Max wire size		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$	1×2.5	1×2.5
	AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$	1×14	1×14

INPUT SPECIFICATION

DC VERSION DATA

Nominal voltage U_{N}	Supply code	Operating range		Release voltage	Control current I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	V	mA
24	7.024	16.8	30	10	10.5
60	7.060	35.6	72	20	6.5

TYPE 38.81.3/38.91.3 DATA

Nominal voltage U_{N}	Supply code	Opera $U_{\text {min }}$	range $U_{\text {max }}$	Release voltage U	Rated coil consumpion I at U_{N}	Power consumpio Pat U_{N}
V		V	V		mA	W
110...125 AC/DC	3.125	94	138	44	8(*)	1(*)
230... 240 AC	3.240	184	264	72	5.61*)	0.5(*)

(*) Rated coil consumption and power consumption values relate to $\mathrm{U}_{\mathrm{N}}=125$ and 240 V .

OUTPUT SPECIFICATION

L 38/2A

Type 38.81/91 (2 A - 24 V DC and $2 \mathrm{~A}-240 \mathrm{~V} \mathrm{AC}$)
Switching current vs ambient temperature.

L 38/0.1A

Type 38.81/91 ($100 \mathrm{~mA}-48 \mathrm{~V}$ DC)
Switching current vs ambient temperature.

COMBINATIONS

Approvals (according to type):

COMBINATION FOR ELECTROMECHANICAL RELAY			
Code	Supply voltage	Type of relay	Type of socket
38.51.0.012.0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.01.0.024
38.51 .0 .024 .0060	24 V AC/DC	34.51.7.024.0010	93.01.0.024
38.51.0.048.0060	48 V AC/DC	34.51.7.048.0010	93.01.0.060
38.51 .0 .060 .0060	60.V AC/DC	34.51.7.060.0010	93.01.0.060
38.51.0.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.01.0.125
38.51.0.240.0060	(220...240)V AC/DC	34.51.7.060.0010	93.01.0.240
38.51.3.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.01.3.125
38.51.3.240.0060	(230...240)V AC	34.51.7.060.0010	93.01.3.240
38.51.7.006.0050	6 V DC	34.51.7.005.0010	93.01.7.024
38.51.7.012.0050	12 V DC	34.51.7.012.0010	93.01.7.024
38.51.7.024.0050	24 V DC	34.51.7.024.0010	93.01.7.024
38.51.7.048.0050	48 V DC	34.51.7.048.0010	93.01.7.060
38.51.7.060.0050	60 V DC	34.51.7.060.0010	93.01.7.060
38.61 .0 .012 .0060	$12 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.012.0010	93.51.0.024
38.61.0.024.0060	$24 \mathrm{~V} \mathrm{AC/DC}$	34.51.7.024.0010	93.51.0.024
38.61.0.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.51 .0 .125
38.61.0.240.0060	(220...240)V AC/DC	34.51.7.060.0010	93.51.0.240
38.61.3.125.0060	(110...125)V AC/DC	34.51.7.060.0010	93.51.3.125
38.61.3.240.0060	(230...240)V AC	34.51.7.060.0010	93.51 .3 .240
38.61.7.012.0050	12 V DC	34.51.7.012.0010	93.51.7.024
38.61.7.024.0050	24 V DC	34.51.7.024.0010	93.51.7.024
COMBINATION FOR SSR RELAY			
Code	Supply voltage	Type of relay	Type of socket
38.81.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.01.7.024
38.81.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.01.7.060
38.81.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.01.0.125
38.81.0.240.xxxx	(220...240)V AC/DC	34.81.7.060.xxxx	93.01.0.240
38.81.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.01.3.125
38.81.3.240.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.01.3.240
38.91.7.024.xxxx	24 V DC	34.81.7.024.xxxx	93.51.7.024
38.91.7.060.xxxx	60 V DC	34.81.7.060.xxxx	93.51.7.060
38.91.0.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.51 .0 .125
38.91.0.240.xxxx	(220...240)V AC/DC	34.81.7.060.xxxx	93.51.0.240
38.91.3.125.xxxx	(110...125)V AC/DC	34.81.7.060.xxxx	93.51 .3 .125
38.91.3.240.xxxx	(230...240)V AC	34.81.7.060.xxxx	93.51.3.240

ACCESSORIES

093.20

Approvals
(according to type):
${ }_{c} \boldsymbol{N I}_{\text {US }}^{\circ}$ (6)

20-way jumper link	093.20

- Rated values: 36 A - 250 V
121.5

Plastic separator	093.01

Thickness 2 mm , required at the start and the end of a group of interfaces.
Can be used for visual separation of groups of interface relays. Must be used for:

- protective separation of different voltages of neighbouring PLC interfaces according to VDE 0106-101
- protection of cut jumper links

Sheet of marker tags (64 tags), $6 \times 10 \mathrm{~mm}$	093.64

48 Series - Relay interface modules 8-10-16 A
48.31

Relay interface modules for use with PLC systems, 15.8 mm wide AC or sensitive DC coil versions available - Instant removal of relay using plastic retaining clip
Supply status indication or coil suppression module provided
Identification label
.35 mm rail (EN 50022) mounting

48.31 48.52/61

* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in ACl
Rated load in AC15 (230 V AC)
Single phase motor rating (230 VAC) kW
Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specifications
Nominal voltage $\left(U_{N}\right) \quad V \operatorname{AC}(50 / 60 \mathrm{~Hz})$

	V DC
Rated power AC/sens. DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$

Operating range

Holding voltage	AC/DC
Must drop-out voltage	AC/DC

Technical data

Mechanical life AC/DC	cycles
Electrical life at rated load AC1	cycles

Operate/release time ms
Insulation according to EN 61810-1 ed. 2
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV
Dielectric strength between open contacts VAC
Ambient temperature range
Protection category
48.52
48.61

- 1 pole, 10 A - 35 mm rail mounting	- 2 pole, 8 A - 35 mm rail mounting	- 1 pole, 16 A - 35 mm rail mounting

- Relay interface modules for use with PLC systems, 15.8 mm wide
AC or sensitive DC coil versions available - Instant removal of relay using plastic retaining clip
- Supply status indication or coil suppression module provided
- Identification label
- 35 mm rail (EN 50022) mounting
48.62

48.62
* For 400 V applications, where requirements for pollution degree 2 are met.

Contact specifications	
Contact configuration	2 CO (DPDT)
Rated current/Maximum peak current A	10/20
Rated voltage/Maximum switching voltage V AC	250/400*
Rated load in AC1 VA	2,500
Rated load in AC15 (230 V AC) VA	500
Single phase motor rating (230 V AC) kW	0.37
Breaking capacity in DC1:30/110/220V A	10/0.3/0.12
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$	300 (5/5)
Standard contact material	AgNi
Coil specifications	
Nominal voltage (U_{N}) V AC $(50 / 60 \mathrm{~Hz})$	-
V DC	12-24-125
Rated power AC/sens. DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	-/0.5
Operating range AC	-
sens. DC	$(0.8 \ldots 1.5) \mathrm{U}_{\mathrm{N}}$
Holding voltage AC/DC	$-/ 0.4 U_{N}$
Must drop-out voltage AC/DC	$-/ 0.1 U_{N}$
Technical data	
Mechanical life AC/DC cycles	$-/ 20 \cdot 10^{6}$
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$
Operate/release time ms	12/12 (DC)
Insulation according to EN 61810-1 ed. 2	$4 \mathrm{kV} / 3$
Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV	6 (8 mm)
Dielectric strength between open contacts V AC	1,000
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Protection category	IP 20
Approvals relay (according to type):	GOST (1) RIN

ORDERING INFORMATION
Example: a 48 series, 35 mm rail (EN 50022) mount relay interface module, with 2 CO (DPDT) - 8 A , coil rated 24 V sensitive DC , green LED + diode.

$2=2$ pole for 48.5

$$
48.62,10 \text { A, DC only }
$$

Coil version
7 = Sensitive DC
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$

Coil voltage

see coil specifications

TECHNICAL DATA

INSULATION

Insulation according to EN 61810-1 ed. 2		insulation rated voltage $\quad \mathrm{V}$	250	
		rated impulse withstand voltage kV	4	
		pollution degree	$3(48.31 / 61 / 62)$	2 (48.52)
		overvoltage category	III	
Dielectric strength between adjacent contacts	V AC	2,000 (48.52)	2,500 (48.62)	

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $3(2 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC ms		2/5			
Vibration resistance (10...55)	$1 \mathrm{~mm}: \mathrm{NO} / \mathrm{NC} \quad \mathrm{g} / \mathrm{g}$	10/4 (for 1 CO or SPDT)		3/3 (for 2 CO or DPDT)	
Power lost to the environment	without contact current W	0.7			
	with rated current W	1.2 (48.31)	1.3 (48.52)	1.2 (48.61)	1.2 (48.62)
Wire strip length	mm	8			
(7) Screw torque	Nm	0.5			
Max wire size		solid cable		stranded cable	
	mm^{2}	$1 \times 6 / 2 \times 2.5$		$1 \times 4 / 2 \times 2.5$	
	AWG	$1 \times 10 / 2 \times 14$		$1 \times 12 / 2 \times 14$	

CONTACT SPECIFICATIONS

F 48/ 1

Electrical life vs ACl load.
1 - Type 48.52 (8 A)
2 - Type 48.31 (10 A)
Type 48.61 (16 A)

H 48/1

Breaking capacity for DC1 load.
1 - Type 48.61
2 - Type 48.31
3 - Type 48.52
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is
$\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

F 48/2

Electrical life vs ACl load. Type 48.62 (10 A)

H 48/2

Breaking capacity for DC1 load.
1 - Type 48.62
A - Load applied to 1 contact
B - Load applied to 2 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DCl 3 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

COIL SPECIFICATIONS
DC VERSION DATA (0.5 W sensitive)

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption
V		$\mathrm{U}_{\text {min }^{*}}$	$\mathrm{U}_{\max }$	I at U_{N}

$* U_{\min }=0.8 U_{N}$ for 48.61 and 48.62

R 48 sens. DC

Operating range (sensitive DC version) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

AC VERSION DATA

Nominal voltage U_{N}	Coil code	Operating range		Rated coil consumption $\text { I at } \mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
V		V	V	mA
12	8.012	9.6	13.2	90.5
24	8.024	19.2	26.4	46
110	8.110	88	121	10.1
120	8.120	96	132	11.8
230	8.230	184	253	7.0

R 48 AC

Operating range (AC version) vs ambient temperature.
1-Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

COMBINATIONS

Code	Type of Socket	Type of Relay	Module	Retaining Clip
48.31	95.03	40.31	99.02	095.01
48.52	95.05	40.52	99.02	095.01
48.61	95.05	40.61	99.02	095.01
48.62	95.05	44.62	99.02	095.01

ACCESSORIES

8-way jumper link	095.18

- Rated values: 10 A - 250 V

Sheet of marker tags (72 tags), $6 \times 12 \mathrm{~mm}$
060.72

PACKAGING CODES

How to code and identify retaining clip and packaging options for relay interface module.
Code options according to the last three letters:

A Standard packaging
B Blister packaging

SP Plastic retaining clip

58 Series - Relay inferface modules 7-10 A

Relay interface modules for use with PLC systems, 27 mm wide AC and DC versions available

- Supply status indication and coil suppression module provided
Identification label
35 mm rail (EN 50022) mounting

Contact specifications
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in AC1
Rated load in AC15 (230 V AC) VA

Single phase motor rating (230 V AC) kW
Breaking capacity in DC1: $30 / 110 / 220 \mathrm{~V} \quad \mathrm{~A}$

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specifications

Nominal voltage $\left(\mathrm{U}_{\mathrm{N}}\right)$	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$
Technical data	
Mechanical life AC/DC	cycles
Electrical life at rated load ACl	cycles
Operate/release time	ms

Operate/release time
Insulation according to EN 61810-1 ed. 2

Insulation between coil and contacts (1.2/50 $\mu \mathrm{s}$) kV
Dielectric strength between open contacts V AC
Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$
Protection category
Approvals relay (according to type):

ORDERING INFORMATION
Example: a 58 series 35 mm rail (EN 55022) mounting interface module, 4 CO (4PDT), 24 V DC coil with green LED + diode.

TECHNICAL DATA

Insulation according to EN 61810-1 ed. 2		insulation rated voltage	V	400 (2-3 pole)	250 (4 pole)
		rated impulse withstand voltage	kV	3.6 (2-3 pole)	2.5 (4 pole)
		pollution degree		2	
		overvoltage category		III	
Dielectric strength between adjacent contacts	V AC	2,000 (58.32,58.33)		1,550 (58.34)	

CONDUCTED DISTURBANCE IMMUNITY

Burst (5...50)ns, 5 kHz , on A1 - A2	EN 61000-4-4	level $4(4 \mathrm{kV})$
Surge (1.2/50 $\mu \mathrm{s}$) on A1 - A2 (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$

OTHER DATA

Bounce time: NO/NC ms		1/4	
Vibration resistance (10..55) Hz, max. $\pm 1 \mathrm{~mm}$: NO/NC N / g		6/6	
Power lost to the environment	without contact current W	1	
	with rated current W	3 (58.32, 58.34)	4 (58.33)
Wire strip length	mm	8	
(단) Screw torque	Nm	0.5	
Max wire size		solid cable	stranded cable
	mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

58 Series - Relay interface modules 7-10 A

CONTACT SPECIFICATIONS
F 58

Electrical life vs AC1 load.
1-4 CO (4PDT) relay type (7 A)
2-2-3 CO (DPDT and 3PDT) relay type (10 A)

H 58

Breaking capacity for DC1 load.
1-2-3 CO (DPDT and 3PDT) type
2-4 CO (4PDT) type
A - Load applied to 1 contact
B - Load applied to 2 contacts in series
C - Load applied to 3 contacts in series
D - Load applied to 4 contacts in series

- When switching a resistive load (DC1) having voltage and current values under the curve the expected electrical life is $\geq 100 \cdot 10^{3}$ cycles.
- In case of DC13 loads the connection of a diode in parallel with the load will permit the same electrical life as for a DC1 load.
Note: the release time of load will be increase.

COIL SPECIFICATIONS

DC VERSION DATA

Nominal voltageU_{N}	Coil code	Operating range		Resistance	Rated coil
		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$	R	I at U_{N}
V		V	V	Ω	mA
12	9.012	9.6	13.2	140	86
24	9.024	19.2	26.4	600	40
48	9.048	38.4	52.8	2,400	20

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil absorption I at $\mathrm{U}_{\mathrm{N}}(50 \mathrm{~Hz})$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
12	8.012	9.6	13.2	50	97
24	8.024	19.2	26.4	190	53
48	8.048	38.4	52.8	770	25
110	8.110	88	121	4,000	12.5
120	8.120	96	132	4,700	12
230	8.230	184	253	17,000	6

R 58 AC

Operating range (AC type) vs ambient temperature.
1 - Max coil voltage permitted.
2 - Min pick-up voltage with coil at ambient temperature.

COMBINATIONS

Code	Type of socket	Type of relay	Module	Retaining clip
58.32	94.02	55.32	99.02	094.01
58.33	94.03	55.33	99.02	094.01
58.34	94.04	55.34	99.02	094.01

ACCESSORIES

094.06

Sheet of marker tags (72 tags), $6 \times 12 \mathrm{~mm}$ 060.72

PACKAGING CODES

How to code and identify retaining clip and packaging options for relay interface module.
Code options according to the last three letters:

A Standard packaging
B Blister packaging
SP Plastic retaining clip

71 Series - Monitoring relay 10 A

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC
Rated load in ACl

Rated load in AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity in DC1: 30/110/220V A
Minimum switching load $\quad \mathrm{mW} /(\mathrm{V} / \mathrm{mA})$
Standard contact ma

Nominal voltage U_{N}	VAC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{VAC}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

Electrical life at rated load ACl cycles
Detection levels
Switch-on delay time/reaction time
Fault memory
Electrical isolation: Supply to Measuring circuits
Insulation according to EN 61810-1 ed. 2
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Protection category

Approvals (according to type):
71.11.8.230.0010

Designed for industrial applications

- Positive safety logic - make contact opens if the measured value is outside of the acceptable range - High precision - measured value based on the average of 500 measurements over a 100 ms period - Industry standard module
- 35 mm rail (EN 50022) mounting
- Switch or link setting of the delay time - LED status indication

- Detection levels $(0.75 \ldots . .1 .2) \mathrm{U}_{\mathrm{N}}$, fixed
- Delay time 5 min or 10 min - link selectable

- 1 phase 230 V - line voltage monitoring
- Detects over/under voltage against fixed limits
- Protects against excessive "starts/hour", typically for motor compressors and high-pressure discharge lamps
Line voltage detection $230 \mathrm{~V} \mathrm{AC}(50 / 60 \mathrm{~Hz})$

71.11.8.230.1010

71.31.8.400.1010
- Designed for industrial applications
- Positive safety logic - make contact opens if the measured value is outside of the acceptable range - High precision - measured value based on the average of 500 measurements over a 100 ms period - Industry standard module

35 mm rail (EN 50022) mounting
Adjustable setting of the detecting levels

- LED status indication

71.31.8.400.1021

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC
Rated load in ACl VA

Rated load in AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity in DC1: 30/110/220V A
Minimum switching load $\mathrm{mW} /(\mathrm{V} / \mathrm{mA})$
Standard contact ma
Supply specification

Nominal voltage U_{N}	V AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / W$
Operating range	AC

Technical data

Electrical life at rated load AC1 cycles
Detection level
Switch-on delay/Switch-off delay/reaction time

Fault memory - selectable
Electrical isolation: Supply to Measuring circuits
Insulation according to EN 61810-1 ed. 2
Ambient temperature range ${ }^{\circ} \mathrm{C}$
Protection category

Approvals (according to type):

- 3 phase 400 V - line voltage monitoring
- Detects over and under voltage against adjustable limits
- Protects against excessive "starts/hour", typically for motor compressors and high-pressure discharge lamps
- Line voltage detection 400 V AC $(50 / 60 \mathrm{~Hz})$
- Detecting levels $(\pm 5 \ldots \pm 20) \% U_{N}$, adjustable

Delay time 5 min or 10 min - switch selectable
141211
71.31.8.400.1021

- 3 phase 400 V - line voltage monitoring - Detects over and under voltage against adjustable limits - Adjustable switch-on delay
- Switch selectable fault memory
- Line voltage detection $400 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$
- Detecting level (0.8 ...0.95) $U_{N}>U>1.15 U_{N}$
- Delay time (0.1 ...12)s adjustable
- Fault memory, switch selectable
- Fault acknowledgement by switch manipulation from ON to OFF and back to ON, or power down

1 CO (SPDT)
10/15
250/400
2,500
500
0.5

10/0.3/0.12
300 (5/5)
AgCdO
AgCdO
$-\quad-\quad$
400400

4/-
4/ -
$(0.8 \ldots 1.15) U_{N}$
-
$100 \cdot 10^{3}$
$(-5 \ldots-20) \% U_{N} \ldots(1.15) U_{N}$ fixed
(0.1...12)s $/<0.5 \mathrm{~s}$

Yes
None - circuits are electrically common
None - circuits are electrically common

uits are electrically common
6 kV
$-20 \ldots+55$
IP20

6 kV
$-20 \ldots+55$
P20

- Designed for industrial applications
- Positive safety logic - make contact opens if the measured value is outside of the acceptable range
- High precision - measured value based on the average of 500 measurements over a 100 ms period
- Industry standard module
- 35 mm rail (EN 50022) mounting
- Adjustable setting of the detecting levels
- LED status indication
71.41.8.230.1021

Universal voltage or current detecting and monitoring relay

- Zero voltage memory according to EN 60204-7-5
- Programmable for DC or AC detection level: range detecting: upper and lower value upper set point minus hysteresis range (5...50)\% for switch on lower set point plus hysteresis range (5...50)\% for switch on
- Fault memory

Electrical isolation between measuring and supply circuits

- Immune to supply interruptions of < 200 ms

Wide detecting range:
voltage: DC (15...700)V, AC (15...480)V

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC
Rated load in AC1 VA

Rated load in AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity in DC1:30/110/220V A
Minimum switching load $\mathrm{mW} /(\mathrm{V} / \mathrm{mA})$
Standard contact ma
Supply specification

Nominal voltage U_{N}	VAC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / W$
Operating range	AC

Technical data

Electrical life at rated load AC1 cycles
Detection levels AC(50/60 Hz)/DC
Switch-off/reaction/Switch-on reaction time
Switch-on level of the detecting level \%

Fault memory - programmable
Electrical isolation: Supply to Measuring circuits

Insulation according to EN 61810-1 ed. 2
Ambient temperature range ${ }^{\circ} \mathrm{C}$

Protection category
Approvals (according to type):

- Designed for industrial applications
- Overload protection according EN 60204-7-3

Positive safety logic - make contact opens if the measured value is outside of the acceptable range - Industry standard module

35 mm rail (EN 50022) mounting

- LED status indication

Contact specification
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltageV AC
Rated load in ACl

Rated load in AC15 $(230 \mathrm{~V} \mathrm{AC})$	VA
Single phase motor rating $(230 \mathrm{~V} \mathrm{AC})$	kW

Breaking capacity in DC1: 30/110/220V A
Minimum switching load $\quad \mathrm{mW} /(\mathrm{V} / \mathrm{mA})$
Standard contact mate
Supply specification

Nominal voltage U_{N}	VAC $(50 / 60 \mathrm{~Hz})$
	VDC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / W$
Operating range	AC
	DC

Technical data

Electrical life at rated load ACl cycles
PTC detecting: Short circuit/Temperature OK
Reset/PTC bre
Fault memory - switch selectable
Electrical isolation: Supply to Measuring circuits
Insulation according to EN 61810-1 ed. 2
Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$
Protection category \quad IP20

Approvals (according to type):
71.91.8.230.0300
71.92.8.230.0401

- Temperature detection with PTC

PTC short circuit detection

- PTC wire breakage detection
- Supply voltage 230 V AC ($50 / 60 \mathrm{~Hz}$)

$U=230 \mathrm{VAC}$
ϑ PTC
Type A
DIN VDE 0660
Part 303

1 NO (SPST-NO)
$10 / 15$
$250 / 400$
2,500

\square
\square

- Temperature detection with PTC
- Fault memory - switch selectable
- Reset by Reset button or supply interruption
- PTC short circuit detection
- PTC wire breakage detection

$1 \mathrm{NO}+1 \mathrm{NC}($ SPST-NO + SPST-NC)
10/15

ORDERING INFORMATION
Example: Universal measuring relay with LCD display for AC/DC voltage detection, with 1 CO (SPDT) contact for 10 A 250 and 230 V supply voltage, programmable delay time and fault memory

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD	
Electrostatic discharge - contact discharge	EN 610004-2	8 kV
- air discharge	EN 610004-2	8 kV
Radio-frequency electromagnetic field ($80 \ldots 1,000$) MHz	EN 610004-3	$3 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on (A1, A2, A3, R1, R2) and (Z1, Z2)	EN 610004-4	2 kV
Surges (1.2/50 $\mu \mathrm{s}$) on (A1, A2, A3, B1, B2) and (Z1, Z2)- common mode	EN 610004-5	4 kV
- differential mode	EN 610004-5	4 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) to A1-A2	EN 610004-6	10 V
Radiated and conducted emission	EN 55022	class B

INSULATION

Insulation according to EN 61810-1 ed. 2		insulation rated voltage	V	250
		rated impulse withstand voltage	kV	4
		pollution degree		3
		over-voltage category		III
Dielectric strength ($\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~B} 1, \mathrm{~B} 2)$, and	V AC	2,500		
contact terminals (11, 12, 14) and terminals (Z1, Z2)	$\mathrm{kV}(1,2 / 50 \mu \mathrm{~s})$	6		
Dielectric strength at open contact	V AC	1,000		

OTHER DATA

Voltage and current values at terminals Z1 Z2	Type 71.11	Link for time range $\quad \mathrm{V} / \mathrm{mA}$	$230 \mathrm{~V} /$ -
	Type 71.91, 71.92	PTC temperature measurement $\quad \mathrm{V} / \mathrm{mA}$	$24 \mathrm{~V} / 2,4$
Maximum length of wiring to the Supply terminals / Measuring terminals	Type 71.11, 71.31	Contact bridge for time range m	150/-
	Type 71.41	Voltage measurement m	150/50
	Type 71.51	Current measurement m	150/50
(Wiring capacitance no greater than $10 \mathrm{nF} / 100 \mathrm{~m}$)	Type 71.91, 71.92	PTC temperature measurement m	$50 / 50$
Measuring principle	$\begin{gathered} \text { Type } 71.11,71.31,71.41,71.51, \\ 71.91,71.92 \end{gathered}$	The measured value is the arithmetical average of 500 individual measurements taken over a 100 ms period. Interruptions less than 200 ms are ignored.	
Safety logic	$\begin{aligned} & \text { Type } 71.11,71.31,71.41,71.51, \\ & 71.91,71.92 \end{aligned}$	Positive safety logic - When the value being monitored lies within the acceptable area, the make contact is closed.	
Reaction time (following the application of the supply voltage)	$\begin{gathered} \text { Type } 71.11,71.31,71.41,71.51, \\ 71.91,71.92 \end{gathered}$	$\leq 0,5$ s	
Power lost to the environment	without contact load VA	4	
	with rated current VA	5	
Permitted storage temperature range	${ }^{\circ} \mathrm{C}$	-40...+85	
Protection category		IP 20	
Max. wire size		solid cable	standed cable
	mm^{2}	$0.5 \ldots(2 \times 2,5)$	$(2 \times 1,5)$
	AWG	20... 2×14)	(2×16)
(간) Screw torque	Nm	0.8	

FUNCTIONS

Explanation of relay marking and LED/LCD display

Monit	CD-display		
ON	LED green steady light: Supply voltage is on and measuring system is active.		
DEF	Default: The detected value is outside of the acceptable range. (Asymmetric is shown by the LED ASY) LED red flashing: Delay time is running. See the function diagram. LED red steady light: Output relay is off. Contact 11-14 (6-2) is open.		
ASY	Phase asymmetry is outside of the predefined range. LED steady light: Output relay is turned off. Contact 11-14 (6-2) is open.		
LEVEL	Selected range as \% value.		
TIME	Delay time ($\mathrm{min}=$ minutes) or ($\mathrm{s}=$ seconds).		
MEMORY ON	Fault memory switched on: The state of the output relay after the occurrence of a fault -contact 11-14 (6-2) open- will be maintained, monitored value returns to within acceptable limits. Fault reset is made by switch manipulation from ON to OFF to ON, or by power down (71.31.8.400.1021), or 71.91.8.230.0401 by operating of the "RESET" button (71.91.8.230.0401).		
MEMORY OFF	Fault memory turned off: The state of the output contacts will only remain in the "fault" condition (contact 11-14 (6-2) open) while the monitored value is outside of the acceptable limits. When the monitored value returns within the acceptable limits the contact will revert to the energised state. Monitored equipment will start again automatically.		
Monitoring relay with LCD-display			
SET/RESET	Relay 71.41 and 71.51 . Sets and resets the programmable values -see operating instructions in the packing		
SELECT	Relay 71.41 and 71.51 . Selects the desired parameter for programming - see operating instructions		
DEF	Default, LED red steady or flashing.		
PROG Modus Short programming instruction	Enter the programming mode by simultaneously pressing the buttons "SET/RESET" and "SELECT" for 3 secs. The word "prog" is shown for 1 sec . "SELECT" allows the choice of "AC" or "DC", and is confirmed with "SET/RESET". Successively pressing the button "SELECT" brings up the choices of Up, Lo, or UpLo. The appropriate choice is made by pressing the "SET/RESET" button. The next steps will program the appropriate values and the selection of the fault memory function (which is selected with a "YES" or "NO"). If all programming steps are completed the display will read "end". After repeatedly pressing the "SET/RESET" button the measured value will be displayed, or "0" appears if nothing is connected to Z 1 and $\mathrm{Z} 2(5$ and 9$)$. If the programming is broken off before "end" is shown in the display the previous program will remain unchanged after an interruption of the supply voltage.		
Program query	Pushing the "SELECT" button for at least 1 sec , enters the "program inquiry mode". The programmed mode and the values are shown on the repeated pressing of the "SELECT" button.		
Flashing M (Memory)	Fault memory has had effect (fault acknowledgement and reset is made by a 3 second press of the "SET/RESET button")		
LCD-display	$\begin{array}{\|l} \text { V }=\text { volt } \\ \text { A }=\text { amp } \\ \text { Up }=\text { upper limit (with hysteresis in down direction) } \\ \text { Lo }=\text { lower limit (with hysteresis in up direction) } \\ \text { UpLo }=\text { upper and lower limit }- \text { range detecting } \end{array}$	Level = value Hys = hysteresis $M=$ Memory (fault) Yes $=$ yes - with memory no $=$ no-without memory	$\mathrm{fl}=\mathrm{Tl}$ - time during which short-time fluctuations are not taken into account $\mathrm{t} 2=\mathrm{T} 2-($ monitoring relay 71.51) the time during which inrush currents are not taken into account.

LED/LCD status announcement/advice

Type	Starting mode	Normal operation	Abnormal mode		Reset
71.11.8.230.0010 71.11.8.230.1010 71.31.8.400.1010		\square Normal operation Set point is OK 11-14 is closed	Time T runs Set point is immaterial 11-14 is open Will close after T , if set point is OK	After expiry of T Set point is not OK 11-14 is open Will close, if set point is OK	
71.31.8.400.1021 Memory OFF		\square Normal operation Set point is OK 11-14 is closed	\square Time T runs Set point is not OK 11-14 is closed	Affer expiry of T Set point is not OK $11-14$ is open \square Will close, if set point is OK	
71.31.8.400.1021 Memory ON		\square Normal operation Set point is OK 11-14 is closed	\square Time T runs Set point is not OK 11-14 is closed	\square After expiry of T Set point is not OK $11-14$ is open Will not close at RESET	\square After expiry of T Set point is OK $11-14$ is open Will close at RESET
71.31.8.400.2000		Normal operation Set point is OK 11-14 is closed	\square Supply voltage to Al (1) and / or A2 (5) is missing $11-14$ is open Will close if supply voltage restored and set point OK \square Incorrect phase rotation or phase failure or voltage A1 (1) and/or $\mathrm{A} 2(5)$ is $>1.11 \mathrm{UN}$ $11-14$ is open Will close, if set point is OK	\square Phase asymmetry \square $11-14$ is open Will close, if set point is OK	
71.41.8.230.1021 Memory OFF		Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed Time T runs Set point is not OK 11-14 is closed	Measured value displayed After expiry of T Set point is not OK 11-14 is open Will close, if set point is OK	
1.1.4.8.230.102 Memory ON		Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed Time T runs Set point is not OK 11-14 is closed	M in the display flashes Measured value displayed After expiry of T Set point is not OK 11-14 is open Will not close at RESET	Min the display - static Measured value displayed After expiry of T Set point is OK 11-14 is open Will close ot RESET
71.51.8.230.1021 Memory OFF	Measured value displayed \square Time T2 runs Set point immaterial 11-14 is closed	Measured value displayed \square Normal operation Set point is OK 11-14 is closed	Measured value displayed \square Time Tl runs Set point is not OK 11-14 is closed	Measured value displayed After expiry of Tl Set point is not OK 11-14 is open Will close if set point OK	
71.51.8.230.1021 Memory ON	Measured value displayed \square Time T2 runs Set point immaterial 11-14 is closed	Measured value displayed Normal operation Set point is OK 11-14 is closed	Measured value displayed \square Time T1 runs Set point is not OK 11-14 is closed	M in the display flashes Measured value displayed \square Affer expiry of Tl Set point is not OK 11-14 is open Will not close at RESET	M in the display - static Measured value displayed After expiry of Tl Set point is OK 11-14 is open Will close at RESET
71.91.8.230.0300		\square Normal operation Set point is OK 11-14 is closed	Temperature too high or PTC line break or PTC short circuit $11-14$ is open Will close if set point OK		
		\square Normal operation Set point is OK 11-14 is closed	Temperature too high or PTC line break or PTC short circuit 11-14 is open Will close if set point OK		
		\square Normal operation Set point is OK 11-14 is closed	\square Temperature too high or PTC line break or PTC short circuit 11-14 is open		Temperature is OK \square $11-14$ is open Will close at RESET

FUNCTIONS

FUNCTIONS

FUNCTIONS

FUNCTIONS

Level control relays for conductive liquids
Emptying or filling functions
Sensitivity: adjustable (72.01) or fixed (72.11)
LED indicator

- Double insulation (6 kV - $1.2 / 50 \mu s$) between: supply and contacts electrodes and supply contacts and electrodes
.35 mm rail mount
Control about a single level or between Min/Max limits

72.11

Contact specifications
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load in AC1
Rated load in AC15 (230 V)
Single phase motor rating (230 V)
Breaking capacity in $\mathrm{DCl}: 30 / 110 / 220 \mathrm{~V}$ A
Minimum switching load $\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact mate
Supply specifications

Nominal voltage (U_{N}) V AC (50/60 Hz)/DC	24	
V AC	110...125-230... 240	
Rated power AC/DC VA (50 Hz)/W	2.5/1.5	2.5/1.5
Operating range	(0.8...1.1) U_{N}	$(0.8 \ldots 1.1) U_{N}$
	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
Technical data		
Electrical life at rated load AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Electrode voltage V AC	4	4
Electrode current mA	0.2	0.2
Run-on time s s	0.5-7 (selectable)	1
Max sensitivity range $\mathrm{k} \Omega$	5... 150 (adjustable)	150 (fixed)
Insulation between supply/contacts/electrode (1.2/50 $\mathrm{\mu s}) \mathrm{kV}$	6	6
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$	$-20 \ldots+60$
Protection category	IP20	IP20
Approvals (according to type):	$C E$	

72.11

- Sensitivity fixed $150 \mathrm{k} \Omega$ - Delay time fixed: 1 s - Emptying or filling functions link selectable

FL $=$ Filing $-7 s$ delay
FS $=$ Filling -0.5 s delay
ES $=$ Emptying -0.5 s delay EL $=$ Emptying -7 s delay

ORDERING INFORMATION

Example: 72 series level control relay, with adjustable sensitivity range, $(230 \ldots 240) \mathrm{V}$ AC supply voltage.

No. of poles
$1=1$ CO (SPDT)

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD	
Electrostatic discharge - contact discharge	EN 61000-4-2	4 kV
- air discharge	EN 61000-4-2	8 kV
Radio-frequency electromagnetic field ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	4 kV
Surges (1.2/50 $\mu \mathrm{s}$) on Supply terminals	EN 61000-4-5	4 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V
Radiated and conducted emission	EN 55022	class B

INSULATION

Insulation		Dielectric strength	Impulse (1.2/50 $\mu \mathrm{s})$
- between supply and contacts	$4,000 \mathrm{~V} \mathrm{AC}$	6 kV	
- between electrodes, Z1-Z2 and supply*	$4,000 \mathrm{~V} \mathrm{AC}$	6 kV	
	$4,000 \mathrm{~V} \mathrm{AC}$	6 kV	
	- between contacts and electrodes	$1,000 \mathrm{~V} \mathrm{AC}$	1.5 kV

*There is no insulation between electrode and supply for the type $72 . x 1.0 .024 .0000$ at 24 V AC/DC.

OTHER DATA

Current absorption on Z1 and Z2 Power lost to the environment		< 1	
		1.5	
	- without contact current W		
	- with rated current W	3.2	
Max wire size		solid cable	stranded cable
	mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$
(7) (7) Screw torque	Nm	0.8	
Max cable length between electrode and relay	m	200 (max. capacitance of $100 \mathrm{nF} / \mathrm{km}$)	

FUNCTIONS

U	$=$ Supply voltage
B1	$=$ Max level electrode
B2	$=$ Min level electrode
B3	$=$ Common
$\overline{Z-Z}$	$=$ Contact 11-14
Z1-Z2	$=$ Link to select emptying
	(Type 72.11)

LED	Supply voltage	NO output contact		Opentacts		Closed
	OFF	Open	$11-14$	$11-12$		
	ON	Open	$11-14$	$11-12$		
	ON	Open (Timing in Progress)	$11-14$	$11-12$		
	ON	Closed	$11-12$	$11-14$		

Function and Run-on time

Type 72.01	Type 72.11
FL $=$ Level control by Filling, Long (7sec) run-on delay.	$\mathbf{F}=$ Level control by Filling, Z1-Z2 open. Run-on time fixed at 1 sec.
FS $=$ Level control by Filling, Short $(0.5 \mathrm{sec})$ run-on delay.	$\mathbf{E}=$ Level control by Emptying, Z1-Z2 linked. Run-on time fixed at 1 sec.

ES = Level control by Emptying, Short (0.5 sec) run-on delay.
EL = Level control by Emptying, Long (7 sec) run-on delay.

[^6]
FILLING FUNCTIONS

Wiring diagram
Examples with 3 electrodes

Examples with $\mathbf{2}$ electrodes

EMPTYING FUNCTIONS

Wiring diagram
Examples with 3 electrodes

Examples with 2 electrodes

Emptying Control about a single level, B1.
Under normal operation the liquid level can be expected to cycle about the level set by electrode B1 with a degree of over and under-shoot.

Switch On:

- On "power-up", if the liquid is above B1 the output relay will operate after time T has expired.
- On the liquid level rising to $B 1$, the output relay will operate after time T has expired.

Switch Off:

- On the liquid level falling below electrode B1, the output relay will de-energise after time T has expired.
- On "power-off", the output relay will immediately de-energise.

APPLICATIONS

EMPTYING function:
Examples with 3 electrodes and with a motor pump connected directly to the contact.

The 72 series level control relays work by measuring the resistance through the liquid, between the common (B3) electrode and Min. and Max. electrodes (B2 and B1).
If the tank is metalic, then this can be substituted as the B3 electrode.
Take care to ensure that the liquid has a suitable resistivity - see below:

SUITABLE LIQUIDS

- City water
- Well water
- Rainwater
- Sea water

Liquids with low-percentage alcohol

- Wine
- Milk, Beer, Coffee
- Sewage
- Liquids fertilizer

UN-SUITABLE LIQUIDS

Demineralised water

- Fuels
- Oil
- Liquids with high-percentage alcohol
- Liquid gas
- Paraffins

Ethylene glycol
Paint

ACCESSORIES

072.01 .06

Suspended electrode for conductive liquids, complete with cable. Suitable for level monitoring in wells and reservoirs not under pressure. All materials used are compatible with food processing applications (according to European Directive 2002/72 and cod. FDA title 21 part 177).
Order appropriate number of electrodes - additional to the relay.
Cable length: $6 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$
Cable length: $15 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$
072.01 .06

- Max. liquid temperature: $+100^{\circ} \mathrm{C}$

Electrode holder with two pole connector, one connected directly to the electrode and the second connected to the grounded installation thread. Suitable for metal tank with $\mathrm{G} 3 / 8^{\prime \prime}$ linkage. Electrode not incuded. Order appropriate number of electrodes holders - additional to the relay.

- Max liquid temperature: $+100^{\circ} \mathrm{C}$
- Max tank pressure: 12 bar
- Cable grip: $\varnothing \geq 6 \mathrm{~mm}$

Electrode holder with three poles. Electrode not incuded.
Order appropriate number of electrodes holders - additional to the relay.

- Max liquid temperature: $+130^{\circ} \mathrm{C}$

APPLICATION NOTES

Applications

The main application for these relays is for the sensing and control of the level of conductive liquids.
Selectable options allow for this control to be achieved either through a filling operation or through an emptying operation, and in either case "positive logic" is used.
Level control can be achieved around a single level - using 2 electrodes, or between Minimum and Maximum levels - using 3 electrodes.
Additionally, the 72.01 , with its adjustable sensitivity setting, can be ideal for monitoring the conductivity of liquids.

Positive safety logic

These relays work according to the principle that it is the closure of a normally open output contact that will be used to control the pump, both in filling and emptying applications. Consequently, in the event of a failure of the supply local to the relay, the filling or emptying will cease. This is generally considered to be the safest option.

Overrunning of tank on filling

Care must be exercised to ensure that the tank cannot overrun. Factors that have to be considered are the pump performance, the rate of discharge from the tank, the position of the single level electrode (or maximum electrode), and the run-on time delay. Keeping the time delay to a minimum will minimise the possibility of tank overrun, but will increase the installed switching rate.

Prevent dry running of pump on emptying

Care must be exercised to ensure that the pump cannot run dry. Similar considerations must be given as outlined above. In particular, keeping the run-on time delay to a minimum will minimise the risk, but again, it will increase the installed switching rate.

Run-on time

In commercial and light industrial applications the use of a short Run-on time delay is more appropriate, due to the relatively small size of tanks and the consequential need to react quickly to the change in level. Larger scale industrial applications involving larger tanks and powerful pumps must avoid a frequent switching cycle, and the use of the 72.01 set for the longer Run-on time of 7 seconds is suggested.
Note that the short run-on time will always achieve closer control to the desired level(s), but at the cost of more frequent switching.

Electrical life of the output contact

The electrical life of the output contact will be enhanced where a larger distance between the Max. and Min. electrodes (3-electrode control) can be realised. A smaller distance, or level control to a single level (2-electrode control), will result in more frequent switching and therefore a shorter electrical life for the contacts. Similarly, the long run-on time will enhance, and the short time will reduce, electrical life.

Pump control

Small single-phase pumps within the $\mathrm{kW}(0.55 \mathrm{~kW}-230 \mathrm{~V} \mathrm{AC})$ rating stated may be driven directly by the level relay output contact. However, where very frequent switching is envisaged, it is better to "slave" a higher power relay or contactor to drive the pump motor. Large pumps (singlephase and three-phase) will of course require an interposing contactor.

Electrodes and cable lengths

Normally 2 electrodes or 3 electrodes will be required for control about a single level, or control between Min. and Max. levels, respectively. However, if the tank is made of conductive material it is possible to use this as the common electrode, B3, if electrical connection can be made to it. The maximum permitted length of cable between the electrode and the relays is 200 m , for a cable not exceeding $100 \mathrm{nF} / \mathrm{km}$.
A maximum of 2 relays and associated electrodes can be employed in the same tank - if two different levels need monitoring.
Note: It is possible to make direct connection (using a contact) between B1-B3 and B2-B3 without using electrodes, but in this case it is not possible set up the sensitivity.

Electrode choice

The choice of electrodes may depend on the liquid being monitored. Standard electrodes 072.01 .06 and 072.51 are suitable for many applications but some liquids may be corrosive for example, and may therefore require custom made electrodes - but these can usually be used with the 72.01 and 72.11 relays.

On site commissioning

To confirm the suitability of the relay sensitivity to the resistance between electrodes it is suggested that the following checks are made.
For convenience it is suggested that the fill function and the shortest run-on time are selected.

Commissioning

Follow these setting-up instructions to achieve correct operation:

72.01

Select the function "FS" (Filling and Short delay of 0.5 s), and set the sensitivity control to $5 \mathrm{k} \Omega$. Ensure that all electrodes are immersed in the liquid - expect the output relay to be ON. Then, slowly rotate the sensitivity control in the $150 \mathrm{k} \Omega$ direction until the level relay switches OFF (internal output relay will switch OFF and red LED will switch slowly flash). (If the level relay does not switch OFF then, either the electrodes are not immersed, or the liquid has too high impedance or the distance between electrodes is too long).
Finally, select the filling or emptying function as required, run in real time

and confirm that the level relay works as required.

72.11

Select the Filling function "F", (Z1-Z2 open). Ensure that all electrodes are immersed in the liquid, but leave electrode B3 disconnected - output relay should be ON. Connect electrode B3, and the level relay should switch OFF (internal output relay will switch OFF and red LED will switch slowly flash). (If the level relay does not switch OFF then, either the electrodes are not immersed, or the liquid has too high impedance or the distance between electrodes is too long.)
Finally, select the filling or emptying function as required, run in real time and confirm that the level relay works as required.

80 Series - Modular timers 6-8-16 A

Contact specifications
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage VAC
Rated load in $\mathrm{ACl} \quad$ VA

Rated load in AC15 $(230 \mathrm{~V} \mathrm{AC})$	VA
Single phase motor rating (230 V AC$)$	kW

Breaking capacity in $\mathrm{DCl}: \quad 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Supply specifications

Nominal voltage	V AC $(50 / 60 \mathrm{~Hz})$
	VDC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

Specified time range

Repeatability	$\%$
Recovery time	ms
Minimum control impulse	ms
Setting accuracy-full range	$\%$
Electrical life at rated load in ACl	cycles
Ambient temperature range	${ }^{\circ} \mathrm{C}$

Protection category	IP 20

Approvals (according to type):
80.11

80.21

*Type 80.41:
(0.1 ...2)s, (1...20)s, (0.1 ...2)min, (1...20)min, (0.1 ...2)h, (1...20)h
**Type 80.61:
$(0.1 \ldots 1) \mathrm{s},(0.5 \ldots 5) \mathrm{s}$, (2...20)s, (0.2 ...2)min

*Type 80.82:
(0.1...2)s, (1...20)s,
(0.1 ...2) min, (1...20)min
**Type 80.91:
(0.1 ...2) s, (1...20)s,
(0.1...2)min, (1...20)min,
(0.1...2)h, (1...20)h

ORDERING INFORMATION
Example: a 80 series, modular timers, 1 CO (SPDT), 16 A, supply rated at (12...240)V AC/DC.

ACCESSORIES

Sheet of marker tags (24 tags), $9 \times 17 \mathrm{~mm}$, for types $80.01 / 11 / 21 / 41 / 61 / 82$	020.24

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD	
Electrostatic discharge - contact discharge	EN 61000-4-2	4 kV
- air discharge	EN 61000-4-2	8 kV
Radio-frequency electromagnetic field ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	4 kV
Surges (1.2/50 $\mathrm{\mu s}$) on Supply terminals - common mode	EN 61000-4-5	4 kV
- differential mode	EN 61000-4-5	4 kV
on start terminal (B1) - common mode	EN 61000-4-5	4 kV
- differential mode	EN 61000-4-5	4 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V
Radiated and conducted emission	EN 55022	class B

INSULATION

Dielectric strength		80.01/11/21/41/82/91	80.61
- between input and output circuit	$V A C$	4,000	2,500
- between open contacts	V AC	1,000	1,000
Insulation (1.2/50 $\mu \mathrm{s}$) between input and output	kV	6	4

OTHER DATA

Current absorption on signal control (B1)			< 1 mA	
Power lost to the environment				
	without contact current	W	1.4	
	with rated current	W	3.2	
Max wire size			solid cable	stranded cable
		mm^{2}	1x6 / 2x4	$1 \times 4 / 2 \times 2.5$
		AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$
(각) Screw torque		Nm	0.8	

FUNCTIONS

$\mathbf{U}=$ Supply voltage $\mathbf{S}=$ Signal switch - = Output contact	LED*	Supply voltage	NO output contact	Contacts	
				Open	Closed
		OFF	Open	15-18	15-16
	$\square \square \square$	ON	Open	15-18	15-16
		ON	Open (Timing in Progress)	15-18	15-16
		ON	Closed	15-16	15-18

* The LED on type 80.61 is illuminated only when the supply voltage is applied to the timer; during the timing period the LED is not illuminated.

Without signal Start = Start via contact in supply line (A1).
With signal Start = Start via contact into control terminal (B1).

With signal START

(SW) Symmetrical recycler: ON start.
Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).

(BE) Signal OFF delay.
Power is permenently applied to the timer.
The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

(CE) Signal ON and OFF delay.
Power is permenently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiages the same preset delay, affer which time the output contacts reset.

(DE) Signal ON pulse.

Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

NOTE: time scales and functions must be set before energising the timer.

* - With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).
- A voltage other than the supply voltage can be applied to the command Start (B 1), example:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V}$ AC
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{VDC}$

FUNCTIONS

NOTE: time scales and functions must be set before energising the timer.

* - With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).
- A voltage other than the supply voltage can be applied to the command Start (B1), example:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V} A C$
$B 1-A 2=12 V D C$

85 Series - Miniałure plug-in timers 7-10 A

Plug-in timer relay
2, 3 or 4 CO (DPDT, 3PDT or 4PDT) contact available

- Seven time scales, from 0.05 s to 100 h Multifunctions
Sockets: see 94 series

ORDERING INFORMATION

Example: 85 series timer, 4 CO (4PDT), $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{supply} \mathrm{voltage} \mathrm{with} \mathrm{Al}$ - DI functions.

TECHNICAL DATA

EMC SPECIFICATIONS

INSULATION

Dielectric strength		85.02/03	85.04
	V AC	2,000	2,000
- between open contacts	V AC	1,000	1,000
Insulation (1.2/50 $\mu \mathrm{s}$) between input and output	kV	6	4

OTHER DATA

Power lost to the environment		2 pole	3 pole	4 pole
without contact current	W	1.6	1.6	1.6
with rated current	W	3.7	4.7	3.6

TIME SCALES

NOTE: time scales and functions must be set before energising the timer.

FUNCTIONS

| $\mathbf{U}=$Supply
 voltage |
| :---: | :---: |
| $=$Output
 contact |

LED	Supply		
		\quad	NO (SPDT-NO)
:---:			
output contact	\quad Open	Contacts	
:---:			

Wiring diagram

Types: 85.02, 85.03, 85.04
(Al) ON delay.

\mathbf{U}	$=$ Supply voltage
\mathbf{S}	$=$ Signal switch
$\mathbf{U C}$	$=$ Supply voltage
to the timer	
$\mathbf{1 1 - 1 4}$	$=$Self-holding contact
\mathbf{Z}	$=$ Output contact

Approvals (according to type):

Timer type	85.02		85.03		85.04	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount	94.02	94.02.0	94.03	94.03.0	94.04	94.04.0
Metal retaining clip (supplied with timer)	094.81					
6-way jumper link for 94.02, 94.03 and 94.04 sockets	094.06	094.06.0	094.06	094.06.0	094.06	094.06.0
Identification tag	094.00 .4					

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
-(간) Torque: 0.5 Nm
- Wire strip length: 8 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

6-way jumper link

- Rated values: 10 A - 250 V

Relay type	$85.02,85.04$	
Colour	BLUE	BLACK
Screwless terminal socket: 35 mm rail (EN 50022) mount	94.54 .1	94.54 .10
Metal retaining clip	094.81	

94.54.

Approvals
(according to type):

C

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-25 \ldots+70)^{\circ} \mathrm{C}$
- Wire strip length: 7 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$2 \times(0.2 \ldots 1.5)$	$2 \times(0.2 \ldots 1.5)$
AWG	$2 \times(24 \ldots 18)$	$2 \times(24 \ldots 18)$

Approvals (according to type):
C ϵ (B) © GOST

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature:
$(-40 \ldots+70)^{\circ} \mathrm{C}$
(4) Torque: 0.5 Nm
- Wire strip length: 8 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$
AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$

Timer type	$\mathbf{8 5 . 0 2}$	$\mathbf{8 5 . 0 3}$		$\mathbf{8 5 . 0 4}$		
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Screw terminal socket: panel or 35 mm rail (EN 50022) mount	94.72	94.72 .0	94.73	94.73 .0	94.74	94.74 .0
Metal retaining clip (supplied with timer)	094.81					

Approvals
(according to type):

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV}$ AC
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (-) Torque: 0.5 Nm

Timer type	85.02	
Colour	BLUE	BLACK
Screw terminal socket: panel or 35 mm rail (EN 50022) mount	94.82	94.82 .0
Metal retaining clip (supplied with timer)		094.81

-Wire strip length: 9 mm

- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 2.5 / 2 \times 1.5$	$1 \times 2.5 / 2 \times 1.5$
AWG	$1 \times 14 / 2 \times 16$	$1 \times 14 / 2 \times 16$

86 Series - Timer modules
86.00

- Multi-function timer modules
- Timer module for 90 and 92 series sockets - LED indicator

Contact specifications
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in AC1

Rated load in AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity in DC1:	$30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
Supply specifications

Nominal voltage	V AC $(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	W
Operating range	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$

Technical data

Specified time range	$(0.05 \ldots 1) \mathrm{s}, ~(0.5 \ldots 10) \mathrm{s}, ~(5 \ldots 100) \mathrm{s},(0.5 \ldots 10) \mathrm{min},(5 \ldots 100) \mathrm{min},(0.5 \ldots 10) \mathrm{h}, ~(5 \ldots 100) \mathrm{h}$
Repeatability \%	± 1
Recovery time ms	≤ 50
Minimun control impulse ms	50
Setting accuracy full range \%	± 5
Electrical life at rated load in AC1 cycles	see 60 and 62 series relays
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$
Protection category	IP 20
Approvals (according to type):	$C \in \text { GOST } c \cdot \mathbb{N}_{\mathrm{US}}^{\oplus}$

86 Series - Timer modules

ORDERING INFORMATION
Example: a 86 series multi-function timer module with (12...240)V AC/DC supply voltage.

COMBINATIONS

Number of poles	Relay type	Socket type	Timer module
1	40.31	95.03	$86.10 / 86.20$
1	40.61	95.05	$86.10 / 86.20$
2	$40.52 / 44.52 / 44.62$	95.05	$86.10 / 86.20$
2	55.32	94.02	$86.10 / 86.20$
2	60.12	90.02	$86.00 / 86.10 / 86.20$
2	62.32	92.03	$86.00 / 86.10 / 86.20$
3	55.33	94.03	$86.10 / 86.20$
3	60.13	90.03	$86.00 / 86.10 / 86.20$
3	62.33	92.03	$86.00 / 86.10 / 86.20$
4	55.34	94.04	$86.10 / 86.20$

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST		REFERENCE STANDARD	86.00	86.10/20
Electrostatic discharge	- contact discharge	EN 61000-4-2	4 kV	n.a.
	- air discharge	EN 61000-4-2	8 kV	8 kV
Radio-frequency electromagnetic field ($80 \div 1000 \mathrm{MHz}$)		EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals		EN 61000-4-4	2 kV	2 kV
Surges (1.2/50 $\mu \mathrm{s}$) on Supply terminals	- common mode	EN 61000-4-5	2 kV	2 kV
	- differential mode	EN 61000-4-5	1 kV	-
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals		EN 61000-4-6	10 V	10 V
Radiated and conducted emission		EN 55022	class B	class B
OTHER DATA		86.00	86.10, 86.20	
Current absorption on signal control (B1) mA		1	-	
Power lost to the environment wit	ontact current W	0.1 (12 V) - 1 (230 V)	0.2	
	rated current	see 60 and 62 series relays	see 40, 4	, 62 series relays

TIME SCALES

Type 86.00

123	123	123	123	123	123	123
$(0.05 \ldots 1) \mathrm{s}$	$(\overline{0.5 \ldots 10) ~ s}$	$(5 \ldots . .100) \mathrm{s}$				

Type 86.10 Type 86.20

$(1.5 . .15)_{\mathrm{s}}$	$(6 . .60)_{\mathrm{s}}$	$(0.8 . . .8)_{\text {min }}$	$(6.4 \ldots . .64)_{\text {min }}$
\square	\square	$\square \square$	\square
\square	\square		

NOTE: time scales and functions must be set before energising the timer.

FUNCTIONS

Without signal Start= Start via contact in supply line (A1).
With signal Start = Start via contact into control terminal (B1).
Type 86.00

* With DC supply, positive polarity has to be conneted to Bl terminal (according to EN 60204-1).

(AI) ON delay.

Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.
(DI) ON pulse.

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.
(SW) Symmetrical recycler: ON start.
Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).

(BE) Signal OFF delay.

Power is permenently applied to the timer.
The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

(CE) Signal ON and OFF delay.

Power is permenently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiates the same preset delay, after which time the output contacts reset.

(DE) Signal ON pulse.
Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

(EE) Signal OFF pulse. Power is permenently applied to the timer. On opening of the Signal Switch (S) the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

(FE) Signal ON pulse + OFF pulse.
Power is permenently applied to the timer.
Both the opening and closing of the Signal Switch (S) initiates the transfer of the output contacts. In both instances the contacts reset after the delay period has elapsed.
 (AI) ON delay.
Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.
(DI) ON pulse.

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.

Approvals (according to type):

Relay type	60.12		60.13	
Colour	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 090.33 supplied with socket packaging code SMA	90.02	90.02 .0	90.03	90.03.0
Metal retaining clip	090.33			
Timer module	86.00, 86.10, 86.20			
6-way jumper link for 90.02 and 90.03 sockets	090.06			

(\in GOst ©

(B) ${ }^{\mathbf{c}}{ }^{\circ}{ }_{u s}$

VDE

- Double terminal A1 (for easy start connection)
- Rated values: 10 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV}$ AC
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$

Tु) Torque: 0.6 Nm

- Wire strip length: 10 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

Approvals (according to type):

- Rated values: $16 \mathrm{~A}-250 \mathrm{~V}$
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
-
- Wire strip length: 10 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 10 / 2 \times 4$	$1 \times 6 / 2 \times 4$
AWG	$1 \times 8 / 2 \times 12$	$1 \times 10 / 2 \times 12$

Approvals (according to type):

Relay type	55.32		55.33		55.32, 55.34	
Colour	BLUE	BLACK	BLUE	BLACK	BLUE	BLACK
Clamp terminal socket: panel or 35 mm rail (EN 50022) mount retaining clip 094.71 supplied with socket packaging code SMA	94.02	94.02.0	94.03	94.03.0	94.04	94.04.0
Metal retaining clip	094.71					
Plastic retaining and release clip	094.01					
6-way jumper link for 94.02, 94.03 and 94.04 sockets	094.06	094.06 .0	094.06	094.06.0	094.06	094.06.0
Identification tag	094.00 .4					
Timer modules	86.10, 86.20					
Sheet of marker tags for retaining and release clip 094.01	060.72					

- Rated values: 10 A - 250 V
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (4)각 Screw torque: 0.5 Nm
- Wire strip length: 8 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

6-way jumper link

- Rated values: 10 A - 250 V

094.06

Sockets for 86 series timers

Approvals (according to type):

C \in (B) © GOST $\mathrm{c}^{\mathbf{7}} \mathrm{H}_{\text {US }}^{\circ}$

| Relay type | 40.31 | $40.51,40.52,40.61$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Colour | BLUE | BLACK | BLUE | BLACK |
| Clamp terminal socket: panel or 35 mm rail (EN 50022) mount,
 retaining clip 095.01 supplied with socket packaging code SPA | 95.03 | 95.03 .0 | 95.05 | 95.05 .0 |
| Plastic retaining and release clip | 095.01 | 095.01 .0 | 095.01 | 095.01 .0 |
| Metal retaining clip | 095.71 | | | |
| 8-way jumper link for 95.03 and 95.05 sockets | 095.18 | 095.18 .0 | 095.18 | 095.18 .0 |
| Identification tag | 095.00 .4 | | | |
| Timer modules | $86.10,86.20$ | | | |
| Sheet of marker tags for retaining and release clip 095.01 | 060.72 | | | |

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$ with a current $>10 \mathrm{~A}$, the contact terminal must be connected in parallel (21 with 11, 24 with 14, 22 with 12)
- Insulation: $\geq 6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$ between coil and contacts
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (4)ㅏㅏㄴ Screw torque: 0.5 Nm
- Wire strip length: 8 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 12 / 2 \times 14$

87 Series - Modular timers 5-8 A
22.5 mm wide

Mono-function and multi-function versions available

- Time scales from 0.05 s to 60 h
"1 delayed contact + 1 instantaneous contact" and remote potentiometer version available (type 87.02)
- True OFF delay version (type 87.61/62)
- LED indicator

35 mm rail (EN 50022) mount

87.01

87.02

Contact specifications
Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC
Rated load in AC1
Rated load in AC15 (230 V AC)
Single phase motor rating (230 VAC$)$

Breaking capacity in $\mathrm{DCl}:$	$30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Standard contact material
Supply specifications

Nominal voltage	VAC $(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

Specified time range	
Repeatability	$\%$
Recovery time	ms
Minimum control impulse	ms
Setting accuracy-full range	$\%$
Electrical life at rated load in AC1	cycles
Ambient temperature range	${ }^{\circ} \mathrm{C}$
Protection category	

Approvals (according to type):
87.01

0		
- Multi-function - 1 pole - 35 mm rail mounting		- Multi-function - Timing can be regulated using ext. Potentiometer - 2 timed contacts or 1 timed +1 instantaneous contact - 35 mm rail mounting
AI: ON delay DI: ON pulse GI: Fixed pulse delayed SW: Symmetrical recycler: ON start	BE: Signal OFF delay CE: Signal ON and OFF Delay DE: Signal ON pulse EE a: Signal OFF pulse	AI: ON delay BE: Signal OFF delay DI: ON pulse CE: Signal ON and GI: Fixed pulse delayed OFF Delay SW: Symmetrical recycler: DE: Signal ON pulse ON start EE a: Signal OFF pulse
wiring diagram (without signal START)	wiring diagram (with signal START)	wiring diagram wiring diagram (without signal START) (with signal START)

22.5 mm wide

- Mono-function and multi-function versions available
- Time scales from 0.05 s to 60 h
- " 1 delayed contact + 1 instantaneous contact" and remote potentiometer version available (type 87.02)
- True OFF delay version (type 87.61/62)
- LED indicator
- 35 mm rail (EN 50022) mount

Contact specifications
Contact configuration
Rated current/Maximum peak current

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	
Supply specifications	
Nominal voltage	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC
Technical data	
Specified time range	$\%$
Repeatability	ms
Recovery time	ms
Minimum control impulse	$\%$
Setting accuracy-full range	cycles
Electrical life at rated load in ACl	${ }^{\circ} \mathrm{C}$
Ambient temperature range	

Repeatability	$\%$	ms
Recovery time	ms	
Minimum control impulse	$\%$	
Setting accuracy-full range	cycles	
Electrical life at rated load in ACl	${ }^{\circ} \mathrm{C}$	
Ambient temperature range		
Protection category		

Approvals (according to type):
Rated voltage/Maximum switching voltage V AC
Rated load in AC1

Rated load in AC15 (230 V AC)
Single phase motor rating (230 V AC)

Breaking capacity in DC1:	$30 / 110 / 220 \mathrm{VA}$
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Supply specifications	
Nominal voltage	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC

Technical data

87.11

wiring diagram (without signal START)

87Series - Modular timers 5-8 A
22.5 mm wide

- Mono-function and multi-function versions available
Time scales from 0.05 s to 60 h
" 1 delayed contact + 1 instantaneous contact" and remote potentiometer version available (type 87.02)
- True OFF delay version (type 87.61/62)

LED indicator
35 mm rail (EN 50022) mount

Contact specifications
Contact configuration
Rated current/Maximum peak current \quad A

Rated voltage/Maximum switching voltage V AC	
Rated load in ACl	VA

Rated load in AC15 (230 V AC)	VA
Single phase motor rating (230 V AC)	kW

Breaking capacity in $\mathrm{DCl}:$	$30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

| Standard contact material |
| :--- | :--- |
| Supply specifications |

Nominal voltage V AC ($50 / 60 \mathrm{~Hz}$)	24... 240	24... 240	24... 240
V DC	24... 48	24... 240	24... 240
Rated power AC/DC VA (50 Hz)/W	5/0.5	1.5/1.5	1.5/1.5
Operating range AC	$(0.85 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.85 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
DC	$(0.85 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$	$(0.85 \ldots 1.2) U_{N}$	$(0.85 \ldots 1.2) \mathrm{U}_{\mathrm{N}}$
Technical data			
Specified time range	See page 163	See page 163	See page 163
Repeatability \%	± 0.2	± 1	± 1
Recovery time ms	50	50	50
Minimum control impulse ms	50	300 ms (A1-A2)	$300 \mathrm{~ms}(\mathrm{Al}$ - A2)
Setting accuracy-full range \%	± 5	± 5	± 5
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$	$-20 \ldots+60$	$-20 \ldots+60$
Protection category	IP 20	IP 20	IP 20
Approvals (according to type):		(G) GOST	

22.5 mm wide

Mono-function and multi-function versions available
Time scales from 0.05 s to 60 h
" 1 delayed contact + 1 instantaneous contact" and remote potentiometer version available (type 87.02)

- True OFF delay version (type 87.61/62)
- LED indicator
- 35 mm rail (EN 50022) mount

87.91

Contact specifications

Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC

Rated load in ACl	VA
Rated load in AC15 (230 V AC)	VA

Single phase motor rating (230 V AC) kW
Breaking capacity in DC1: 30/110/220 V A

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	
Supply specifications	
Nominal voltage	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC

Technical data

Specified time range

Repeatability	$\%$
Recovery time	ms
Minimum control impulse	ms
Setting accuracy-full range	$\%$
Electrical life at rated load in ACl	cycles
Ambient temperature range	${ }^{\circ} \mathrm{C}$

Protection category
Approvals (according to type):
87.82

- Mono-function: Star - delta - 2 pole - 35 mm rail mounting	- Multifunction -35 mm rail mounting	
SD: Star - delta	L: Asymmetrical recycler LE: Signal asymmetrical (ON starting) recycler (ON starting) PI: Asymmetrical recycler PE: Signal asymmetrical (OFF starting) recycler (OFF starting)	
wiring diagram (without signal START)	wiring diagram (without signal START)	wiring diagram (with signal START)

ORDERING INFORMATION
Example: 87 series multi-function timer 8 A, 1 CO (SPDT) contact, with ($24 \ldots 240$)V AC ($50 / 60 \mathrm{~Hz}$) and ($24 \ldots 48$)V DC supply.

Series

```
8 7.0 1.0.24 0.0 0 0 0
\(0=\) Multi-function
(AI, BE, CE, DI, DE, EE a, GI, SW, ON, OFF)
\(1=\mathrm{ON}\) delay (Al)
\(2=\) ON pulse (DI)
3 = Symmetrical recycler: ON start (SW)
Supply voltage
= Signal OFF delay (BE)
\(240=\left\{\begin{array}{l}(24 \ldots 48) V \text { DC } \\ 24 \ldots 240) V \text { AC }\end{array}\right.\)
\(240=(24 \ldots 240) V\) AC/DC for 87.61 and 87.62
Supply version
0 = AC ( \(50 / 60 \mathrm{~Hz}\) )/DC
No. of poles
\(1=1\) pole
6 = True OFF delay (power OFF) (B)
\(2=2\) pole for \(87.02 / 62\)
8 = Star - delta (SD)
\(2=2\) NO DPST-NO) for 87.82
9 = Asymmetrical recycler (LI, LE, PI, PE)
```


Type

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD	
Electrostatic discharge	EN 61000-4-2	8 kV
	EN 61000-4-2	8 kV
Radio-frequency electromagnetic field ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	6 kV
Surges ($1.2 / 50 \mathrm{\mu s}$) on Supply terminals $\frac{\text { - common mode }}{}$ Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-5	4 kV
	EN 61000-4-5	-
	EN 61000-4-6	10 V
Radiated and conducted emission	EN 55022	class B

OTHER DATA

Signal control (B1) - current absorption	1 mA		
- max cable lenght (capacity of $\leq 10 \mathrm{nF} / 100 \mathrm{~m}$)	$\leq 250 \mathrm{~m}$		
Power lost to the environment	87.01/02/11/21/31/41/91	87.61/62	87.82
- without contact current W	5	1.5	8
- with rated current W	15	7	18
Max wire size mm^{2}	solid cable	stranded cable	
	1×4/2x2.5	$1 \times 4 / 2 \times 1.5$	
AWG	$1 \times 12 / 2 \times 14$	$1 \times 12 / 2 \times 16$	
(5) Screw torque Nm	1.2		

TIME SCALES

Type	Function Code	Function	s	s	s	min	min	min	h	h	h	h
			0.05	0.15	0.5	0.05	0.15	0.5	0.05	0.15	0.5	3
			1	3	10	1	3	10	1	3	10	60
$\begin{gathered} 87.01 / \\ 87.02 \end{gathered}$	Al	ON delay	-	-	\bullet	-	-	-	\bullet	-	-	-
	BE	Signal OFF delay	\bullet	\bullet	\bullet	\bullet	-	-	\bullet	-	-	-
	CE	Signal ON and OFF delay	\bullet	\bullet	\bullet	\bullet	-	-	\bullet	-	-	\bullet
	DI	ON pulse	-	\bullet	\bullet	-	-	-	\bullet	\bullet	-	\bullet
	DE	Signal ON pulse	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet	\bullet
	EE a	Signal OFF pulse	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	-
	Gl	Fixed pulse (0,5s) delayed	-	\bullet	\bullet	\bullet	-	-	-	-	\bullet	\bullet
	SW	Symmetrical recycler: ON start	\bullet	\bullet	-	\bullet	-	\bullet	\bullet	\bullet	-	\bullet
87.11	AI	ON delay	-	-	\bullet	-	\bullet	-	\bullet	-	-	-
87.21	DI	ON pulse	-	-	\bullet	\bullet	-	-	-	-	-	\bullet
87.31	SW	Symmetrical recycler: ON start			-							
87.41	BE	Signal OFF delay	-	-	-	-	-	-	\bullet	-	-	-
$\begin{gathered} 87.61 / \\ 87.62 \end{gathered}$	BI	True OFF delay (power OFF)		$\begin{gathered} 0.15 \\ 2.5 \end{gathered}$	\bullet	$\begin{gathered} 0.07 \\ 1.3 \end{gathered}$		\bullet				
87.82	SD	Star - delta ($T_{U}=\sim 60 \mathrm{~ms}$)				\bullet						
87.91	LI	Asymmetrical recycler (ON starting)	\bullet	\bullet	-	-	-	-	\bullet	-	\bullet	\bullet
	LE	Signal asymmetrical recycler (ON starting)	\bullet	-	-	-	-	-	-	-	\bullet	\bullet
	Pl	Asymmetrical recycler (OFF starting)	-	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	-
	PE	Signal asymmetrical recycler (OFF starting)	\bullet	\bullet	\bullet	\bullet	-	-	\bullet	-	\bullet	\bullet

NOTE: time scales and functions must be set before energising the timer.

FUNCTIONS

	LED** Green	Timing	NO output contact	Contacts										
				Timed			Instantaneous*							
				Open	Closed	DIP switch	Open	Closed						
\mathbf{U} = Supply Voltage		None	Open	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$	Up	21-24*	21-22*						
Signal switch	\|							In progress	Open	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$		21-22*	21-24*
		In progress	Closed	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$		21-22*	21-24*						
C = Output Conta		None	Closed	$\begin{aligned} & 15-16 \\ & 25-26^{*} \end{aligned}$	$\begin{aligned} & 15-18 \\ & 25-28^{*} \end{aligned}$	Down	21-22*	21-24*						

* 25-26-28 only for type 87.02 with 2 timed contacts. 21-22-24 only for type 87.02 with 1 instantaneous contact +1 timed positioning the front DIP switch.
** The LED on types 87.61 and 87.62 is illuminated when supply voltage is supplied to timer.
Without signal Start= Start via contact in supply line (A1). With signal Start = Start via contact into control terminal (B1). With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).
Wiring diagram

Multi-function
without signal START

* A voltage other than the supply voltage can be applied to the command START (B1).
Example:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V} \mathrm{AC}$ $\mathrm{B} 1-\mathrm{A} 2=24 \mathrm{~V} A C$
** Type 87.02: regulated using an external potentiometer ($10 \mathrm{k} \Omega-0.25 \mathrm{~W}$).

FUNCTIONS

Type

Asymmetrical recycler

8-11 pin plug-in version available

- Multi-voltage and multi-function versions available
- Time scales from 0.05 s to 100 h
" 1 delayed contact +1 instantaneous contact" version available (type 88.12)
- Front panel mount
- Sockets: 90 series

Contact specifications
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage V AC
Rated load in ACl
Rated load in AC15 (230 V AC)
Single phase motor rating (230 VAC) kW

Breaking capacity in $\mathrm{DCl}:$	$30 / 110 / 220 \mathrm{VA}$
Minimum switching load	$\mathrm{mW} / \mathrm{V} / \mathrm{mA}$

Standard contact material $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Supply specifications

Nominal voltage	VAC $(50 / 60 \mathrm{~Hz})$
	VDC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

Specified time range

Repeatability	$\%$
Recovery time	ms
Minimum control impulse	ms
Setting accuracy-full range	$\%$
Electrical life at rated load in ACl	cycles
Ambient temperature range	${ }^{\circ} \mathrm{C}$

Protection category

Approvals (according to type):
88.12

- Multi-function - 11 pin - Plug-in for use with 90 series sockets	- Multi-function - 8 pin, 2 timed contacts or 1 timed + 1 instantaneous contact - Plug-in for use with 90 series sockets
AE: Signal ON delay BE: Signal OFF delay DE: Signal ON pulse with signal START	Al a: ON Delay (2 timed contacts) Al b: ON Delay (1 timed +1 instantaneous contact) Dl a: ON Pulse (2 timed contacts) Dl b: ON Pulse (1 timed +1 instantaneous contact)

ORDERING INFORMATION
Example: 88 series multi-function timer, 2 CO (DPDT) contact 8 A , with ($24 \ldots 230$)V $\mathrm{AC}(50 / 60 \mathrm{~Hz}$) and (24...230)V DC supply.

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD	
Electrostatic discharge - contact discharge	EN 61000-4-2	4 kV
- air discharge	EN 61000-4-2	8 kV
Radio-frequency electromagnetic field ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	$2 \mathrm{kV} / 5 \mathrm{kV}$
Surges (1.2/50 s) on Supply terminals - common mode	EN 61000-4-5	2 kV
- differential mode	EN 61000-4-5	1 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	3 V

TIME SCALES AND FUNCTIONS SELECTION

		$\mathbf{8 8 . 0 2}$	$\mathbf{8 8 . 1 2}$
E	Function selector	$\mathrm{AE}, \mathrm{AI}, \mathrm{BE}, \mathrm{DE}, \mathrm{HI}, \mathrm{SW}$	$\mathrm{Al} \mathrm{a}, \mathrm{Al} \mathrm{b}, \mathrm{DI} \mathrm{a} DI b$,
D	Time scale selector	$0.5,1,5,10$	$0.5,1,5,10$
H	Unit of time selector	s, min, h, 10h	s, min, h, 10h

A	Yellow LED: power ON (U)
B	Red LED: timing in progress (C)
C	Unit of time selected
F	Function selected
\mathbf{G}	Time selected

TIME SCALES
END SCALE

$\mathbf{D} \quad \mathbf{H}$	\mathbf{s}	$\mathbf{m i n}$	\mathbf{h}	$\mathbf{x 1 0} \mathbf{h}$
$\mathbf{0 . 5}$	0.5 s	0.5 min	0.5 h	5 h
$\mathbf{1}$	1 s	1 min	1 h	10 h
$\mathbf{5}$	5 s	5 min	5 h	50 h
$\mathbf{1 0}$	10 s	10 min	10 h	100 h

NOTE: time scales and functions must be set before energising the timer.

FUNCTIONS

Without signal Start= Start via contact in supply line (A1).
With signal Start $=$ Start via contact into control terminal (6/21).

Wiring diagram

Type 88.02

without signal START

with signal START

without signal START

Type 88.12
without signal START

(Al) ON delay.
Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.
(SW) Symmetrical recycler: ON start.
Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).

(AE) ON delay.

When power is applied, the timer will function as an ON delay except when the Signal Switch (S) is closed which will force the output and the timing process into the reset condition.

(BE) Signal OFF delay.

Power is permenently applied to the timer.
The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

(DE) Signal ON pulse.

Power is permenently applied to the timer.
On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

(HI) ON pulse.

Apply power to timer. Output contacts transfer immediately After preset time has elasped, contacts reset.
N.B. Ensure a fixed connection between Terminals 2 and 6.

(Al a) ON Delay (2 timed contacts).

Apply power to timer.
Contacts $\left(C_{1}\right.$ and $\left.C_{2}\right)$ transfer after preset time has elasped.
Reset occurs when power is removed.

(Al b) ON Delay (1 timed contact +1 instantaneous contact).

Apply power to timer. Output contact $\left(\mathrm{C}_{1}\right)$ transfers immediately. Contact $\left(C_{2}\right)$ transfers after the preset time has elasped. Reset occurs when power is removed.

(Dl a) ON pulse (2 timed contacts).

Apply power to timer.
Output contacts (C_{1} and C_{2}) transfer immediately. After preset time has elasped, the contacts reset.

(Dl b) ON pulse (1 timed contact + 1 instantaneous

 contact).Apply powert to timer. Output contacts (C_{1} and C_{2}) transfer immediately. After preset time has elasped, the contact $\left(C_{2}\right)$ resets. Contact $\left(C_{1}\right)$ resets when power is removed.

Approvals (according to type):

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
-(ㄱ)겨 Torque: 0.5 Nm
- Wire strip length: 10 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 6 / 2 \times 2.5$	$1 \times 6 / 2 \times 2.5$
AWG	$1 \times 10 / 2 \times 14$	$1 \times 10 / 2 \times 14$

$\mathbf{8 8 . 1 2}$			$\mathbf{8 8 . 0 2}$
BLUE	BLACK	BLUE	BLACK
90.20	90.20 .0	90.21	90.21 .0

90.20

90.21

Approvals (according to type):

CE GOST © MRA CTN US VOE

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$
- Protection category: IP 20
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
- (7) Torque: 0.8 Nm
- Wire strip length: 11 mm
- Max wire size:

	solid wire	stranded wire
mm^{2}	$1 \times 4 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 12 / 2 \times 14$	$1 \times 12 / 2 \times 14$

Timer type	$\mathbf{8 8 . 1 2}$	$\mathbf{8 8 . 0 2}$		
Colour	BLUE	BLACK	BLUE	BLACK
Screw terminal socket: panel or 35 mm rail (EN 50022) mount	90.26	90.26 .0	90.27	90.27 .0

Timer type	$\mathbf{8 8 . 1 2}$	$\mathbf{8 8 . 0 2}$		
Colour	BLUE	BLACK	BLUE	BLACK
Sockets 8-11 pin backwired with solder terminals	-	90.12 .4	-	90.13 .4

Approvals (according to type):

C $€$ gost

- Rated values: $10 \mathrm{~A}-250 \mathrm{~V}$
- Dielectric strength: $\geq 2 \mathrm{kV} \mathrm{AC}$

90.12.4 90.13.4
- Ambient temperature: $(-40 \ldots+70)^{\circ} \mathrm{C}$
10.32

A range of light dependent relays with 1 or 2 NO (SPST-NO or DPST-NO) contacts

- Pole or flange mounting
- Double break (phase + neutral) type available (type 10.32)
- Sensitivity adjustment from 1 to 150 lux

ORDERING INFORMATION

Example: a 10 series light dependent relay with 1 NO (SPST-NO) 12 A contact and screw terminal connections, with 230 V AC supply.

TECHNICAL DATA

INSULATION	10.32			10.41	
Dielectric strength - between open contacts	V AC	1,000		1,000	
OTHER DATA	10.32			10.41	
Cable grip	\varnothing mm	(8.9...13)		(8.9...13)	
Preset threshold	1 x	5 switch ON / 20 switch OFF		3 switch ON / 8 switch OFF	
Max wire size		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	1x6 / 2x4	$1 \times 6 / 2 \times 2.5$	$1 \times 6 / 2 \times 4$	$1 \times 6 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 14$	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 14$
(4) Screw torque	Nm	1.2		1.2	

WIRING DIAGRAMS

11 Series - Modular light dependent relays 16 A
11.01

- Type 11.01 is suitable for use on staircases and in entrance halls

Selector with 3 positions:

. high range (threshold setting 20... 1000 (x) - low range (threshold setting 1... 30 lx) - continuous light (particularly interesting for the Test at the first installation)

- Type 11.71: with 1 CO (SPDT) contact and with (12...24)V AC/DC voltage supply SELV separation between contact and supply circuit
- Supplied with separate sensitive photocell - LED indication
- 35 mm rail (EN 50022) mount

ORDERING INFORMATION
Example: a 11 series light dependent relay "zero hysteresis" with 1 CO (SPDT) 16 A contact and 35 mm rail mounting, with 230 V AC supply.

TECHNICAL DATA

INSULATION		11.01		11.71	
Dielectric strength					
- between supply and conta	V V AC	4,000		4,000	
- between open contacts	V AC	1,000		1,000	
OTHER DATA		11.01		11.71	
Cable grip of sensitive photocell	\varnothing mm	7.5...9		7.5... 9	
Cable length	m	$50\left(2 \times 1.5 \mathrm{~mm}^{2}\right)$			
Preset threshold	Ix	10		100	
Power lost to the environment					
- without contact current	W	1.3		0.8	
- with rated current	W	3.1		2	
Max wire size		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 6 / 2 \times 2.5$	1x6 / 2x4	$1 \times 6 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 14$	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 14$
(74) Screw torque	Nm	0.8		0.8	

WIRING DIAGRAMS

Type 11.01
"ZERO HYSTERESIS"
LIGHT DEPENDENT RELAYS

Switch OFF level = Switch ON level. Patented "Zero Hyseresis" circuitry ensures reliable switching without wasting energy.

"Traditional" light dependent relays incorporate switching hysteresis to prevent malfunctioning or tripping. This results in an unnecessary delay in switching off, and a resulting waste of energy (over period T).

ACCESSORIES

Sensitive photocell (supplied with light dependent relay)	011.00

12.01

- Types available:
- type 12.01/11-mechanical daily time switch
type 12.21/22/71-digital weekly time switch
- 17.5 mm wide (type $12.11 / 71$)
- 35 mm rail (EN 50022) mount
- Internal battery for the set up without supply (types 12.21/22/71)
- Impulse function (1...59)s (types 12.21/22/71)
- Automatically adjusts for daylight saving (types 12.21/22/71)
12.11

- Types available:
type 12.01/11 - mechanical daily time switch
type 12.21/22/71-digital weekly time switch
- 17.5 mm wide (type 12.11/71)
- 35 mm rail (EN 50022) mount
- Internal battery for the set up without supply (types 12.21/22/71)
- Impulse function (1...59)s
(types 12.21/22/71)
- Automatically adjusts for daylight saving (types 12.21/22/71)
$\frac{\text { V AC }(50 / 60 \mathrm{~Hz})}{\text { V DC }}$

Technical data

Electrical life at rated load in AC1 cycles
Type of time switch

Programs			30	30
Minimum interval setting min			1	1
Accuracy s/day			1.5	1.5
Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$	-5... +55	-10...+55	-5... +55	-10...55
Protection category	IP 20		IP 20	IP 20
Approvals (according to type):	C \in Gost			

ORDERING INFORMATION

Example: a 12 series, mechanical daily time switch, 1 CO (SPDT) 16 A , supply voltage 230 V AC.

$$
\begin{array}{lllllllllll}
1 & 2.0 & 1 & 8 . & 2 & 3 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Series

Type

$0=$ Daily, 35.8 mm wide
$1=$ Daily, 17.5 mm wide
$2=$ Weekly, 35.8 mm wide
7 = Weekly, 17.5 mm wide
No. of poles
1 = 1 CO (SPDT), 16 A
$2=2 \mathrm{CO}$ (DPDT), 16 A (for 12.22 only)

Option
$0=$ with power back-up
1 = without power back-up (for 12.11 only)
Supply voltage
$024=24 \mathrm{~V} \mathrm{AC} / D C$
$230=230 \mathrm{~V}$
Supply version
$0=\mathrm{AC}(50 / 60 \mathrm{~Hz}) / \mathrm{DC}($ for 12.21.0.024 only)
$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$

TECHNICAL DATA

INSULATION	12.01, 12.11			12.21/12.22/12.71	
Dielectric strength - between open contacts	V	1,000		1,000	
OTHER DATA		12.01, 12.11		12.21/12.22/12.71	
Power back-up		70 h (following 80 h of continuous energisation)		6 years after the first operation	
Power lost to the environment - without contact current	W	1.5		2	
- with rated current	W	2.5		3 (for 1 CO or SPDT)	4 (for 2 CO or DPDT)
Max wire size		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 6 / 2 \times 2.5$	$1 \times 6 / 2 x 4$	$1 \times 6 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 14$	$1 \times 10 / 2 \times 12$	$1 \times 10 / 2 \times 14$
(4) Screw torque	Nm	1.2		1.2	

WIRING DIAGRAMS

WIRING DIAGRAMS

ACCESSORIES

PC programming kit for type 12.71 contents: programming port, serial cable and software	012.00

- Power supply: via PC-RS232 serial interface
- Power consuption: < 10 mA
- Ambient temperature: $(-5 \ldots+35)^{\circ} \mathrm{C}$

- Protection category: IP 00

INSTALLATION OF PC-SOFTWARE

- Place the CD in the CD-drive
- Installation should START
- Follow the on-screen instructions

Choose your language and
13.01

- Electronic step relays
- Control circuit can be used continuously
- Longer mechanical and electrical life, and much quieter than electromechanical step relays
- Suitable for SELV applications (according to IEC 364), type 13.01
- 35 mm rail (EN 50022) or flange mount - Low voltage supply 12-24 V, type 13.01
13.71

Contact specifications
Contact configuration
Rated current/Max. peak current
Rated voltage/Max. switching voltage
Rated load in AC1 VA

Rated load in AC15 (230 V AC) VA
Nominal lamp rating: incandescent (230 V) W

compensated fluorescent (230 V) W	750	350
uncompensated fluorescent (230 V) W	1,000	500
halogen (230 V) W	2,000	1,000
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgSnO_{2}	AgSnO_{2}
Supply specifications		
Nominal voltage V AC ($50 / 60 \mathrm{~Hz}$)	12-24-110...125-230... 240	230
V DC	12-24	-
Rated power AC/DC V AC (50 Hz)/W	2.5/2.5	1.5/-
Operating range \quad AC $(50 \mathrm{~Hz})$	$(0.8 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.15) \mathrm{U}_{\mathrm{N}}$
DC	$(0.9 \ldots 1.1) U_{N}$	-
Technical data		
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Maximum impulse duration	continuous	continuous
Dielectric strength between: open contacts V AC	1,000	1,000
supply - contacts V AC	4,000	-
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+60$	$-10 \ldots+60$
Protection category	IP 20	IP 20
Approvals (according to type):	CE GOST	GOST (1)

ORDERING INFORMATION
Example: a 13 series, electronic step or monostable relay, 35 mm rail mount and 1 NO (SPDT-NO) 16 A contact, with 230 V AC supply.

TECHNICAL DATA

TYPE	Number of steps	SEQUENCES	
		1	2
13.01 13.71	2	1	4

WIRING DIAGRAMS

14.01

- One module (17.4 mm) wide
- Time range from 30 s to 20 min
- Can be used with illuminated push - buttons
- Suitable for 3 or 4 wiring systems
- LED indicators
- 35 mm rail (EN 50022) mount

	- Multi-function - 1 NO (SPDT-NO) - 35 mm rail mount	- For 3 or 4 wiring system - 1 NO (SPDT-NO) - 35 mm rail mount
Contact specifications		
Contact configuration	1 NO (SPDT-NO)	1 NO (SPDT-NO)
Rated current/Max. peak current A	16/30 (100 A - 5 ms)	16/30 (100 A - 5 ms)
Rated voltage/Max. switching voltage V AC	230/-	230/-
Rated load in ACl VA	3,700	3,700
Rated load in AC15 (230 V AC) VA	750	750
Nominal lamp rating: incandescent (230 V) W	2,000	2,000
compensated fluorescent (230 V) W	750	750
uncompensated fluorescent (230 V) W	1,000	1,000
halogen (230 V) W	2,000	2,000
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgSnO_{2}	AgSnO_{2}
Supply specifications		
Nominal voltage $\frac{V \mathrm{CAC}(50 / 60 \mathrm{~Hz})}{\mathrm{V} C}$	230	230
	-	-
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	2/-	1.5/-
Operating range $\quad \begin{aligned} & \text { AC }(50 \mathrm{~Hz}) \\ & \end{aligned}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
	-	-
Technical data		
Electrical life at rated load in ACl cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Delay setting min	0.5... 20	0.5... 20
Max no. of illuminated push-button ($\leq 1 \mathrm{~mA}$)	15	30
Maximum impulse duration	continuous	continuous
Ambient temperature range ${ }^{\circ} \mathrm{C}$	-10...+50	-10...+60
Protection category	IP 20	IP 20
Approvals (according to type):	CE GOSt NF	

ORDERING INFORMATION
Example: a 14 series single module relay with a single phase switch 1 NO (SPDT-NO) 16 A contact, with supply rated at 230 VAC .

No. of poles
1 = Single phase switch, 16 A

TECHNICAL DATA

INSULATION	14.01			14.71	
Dielectric strength		1,000		1,000	
- between open contacts	$V A C$				
OTHER DATA	14.01			14.71	
Power lost to the environment		1.3		1	
- without contact current	W				
- with rated current	W	3.3		3.3	
Max wire size	mm^{2}	solid cable	stranded cable	solid cable	stranded cable
		$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$	1x6 / 2x4	$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$
(ํㅐํ) Screw torque	Nm	0.8		0.8	

WIRING DIAGRAMS

Type 14.71

LED indication: red = relay ON

3 wire connection

4 wire connection

FUNCTIONS

Type 14.01.8.230 The following functions are selected by means of a DIP SWITCH:

Type 14.71.8.230 The following functions are selected by means of a SELECTOR SWITCH:

20 Series - Modular step relays 16 A

One module (17.4 mm) wide

- Test button with mechanical indicators
- 6 functions available
- AC and DC coils

Identification label

- Possible to connect illuminated push buttons
- 35 mm rail (EN 50022) mount
20.21

- Single phase switch 1 NO (SPDT-NO)
- 35 mm rail mount

20.22, 24, 26, 28

20.23

Contact specifications
Contact configuration
Rated current/Max. peak current
Rated voltage/Max. switching voltage
Rated load in AC1 VA

Rated load in AC15 $(230 \mathrm{~V} \mathrm{AC})$	VA
Nominal lamp rating: incandescent $(230 \mathrm{~V})$	W

compensated fluorescent (230 V) W	
uncompensated fluorescent (230 V) W	
halogen (230 V) W	
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	
Coil specifications	

Nominal voltage	V AC $(50 / 60 \mathrm{~Hz})$
	VDC
Rated power AC/DC	VA $(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

	Technical data
Mechanical life	cycles
Electrical life at rated load in AC1	cycles
Minimum/Maximum impulse duration	

Minimum/Maximum impulse duration	
Insulation between coil and contacts $(1.2 / 50 \mu \mathrm{~s})$	kV
Ambient temperature range	${ }^{\circ} \mathrm{C}$

Ambient temperature range $\quad{ }^{\circ} \mathrm{C}$
Protection category
Approvals (according to type):

ORDERING INFORMATION
Example: a 20 series 35 mm rail (EN 50022) mount relay with double phase switch, 2 NO (DPST-NO) 16 A contacts, coil rated at 12 V DC and with AgSnO_{2} contacts.

TECHNICAL DATA

INSULATION

Dielectric strength - between supply and contacts V AC	3,500			
- between open contacts V AC	2,000			
- between adjacent contacts V AC	2,000			
OTHER DATA	20.21, 20.23, 20.28		20.22, 20.24, 20.26	
Power lost to the environment - with rated current and coil deenergised W	1.3		2.6	
	COIL CLAMPS		CONTACT CLAMPS	
Max wire size	solid cable	stranded cable	solid cable	stranded cable
mm^{2}	$1 \times 4 / 2 \times 2.5$	$1 \times 2.5 / 2 \times 2.5$	$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$
AWG	$1 \times 12 / 2 \times 14$	$1 \times 14 / 2 \times 14$	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$
(가) Screw torque Nm	0.8		0.8	

If the coil is operated for a prolonged period of time, adaquate ventilation of the relays must be provided, for example leaving a gap of about 9 mm between relays.

COIL SPECIFICATIONS

DC VERSION DATA

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Consumption I at U_{N}
		$U_{\text {min }}$	$\mathrm{U}_{\text {max }}$		
V		V	V	Ω	mA
12	9.012	10.8	13.2	27	440
24	9.024	21.6	26.4	105	230
48	9.048	43.2	52.8	440	110
110	9.110	99	121	2,330	47

AC VERSION DATA

20

Nominal	Coil code	Operating range		Resistance	Consumption
U_{N}		$U_{\text {min }}$	$U_{\text {max }}$	R	$(50 \mathrm{~Hz})$
V		V	V	Ω	mA
8	8.008	6.8	8.8	4	800
12	8.012	10.2	13.2	7.5	550
24	8.024	20.4	26.4	27	275
48	8.048	40.8	52.8	106	150
110	8.110	93.5	121	590	64
120	8.120	102	132	680	54
230	8.230	195.5	253	2,500	28
240	8.240	204	264	2,700	27.5

WIRING DIAGRAMS

Example: 230 V AC supply voltage.

L

Example: 24 V AC supply voltage.

ACCESSORIES

MODULE FOR ILLUMINATED PUSH-BUTTONS

Type 026.00
Sealed version, 7.5 cm insulated and flexible terminals.

Example of wiring diagram of type 026.00
This module is necessary if using up to a maximum of 15 illuminated pushbuttons (1.5 mA max, 230 VAC) in the switching input circuit. It must be be connected in parallel to the coil of the relay (see diagram).
22.21

- One module (17.4 mm) wide
- Test button
- Identification label
- AC and DC coils
- 35 mm rail (EN 50022) mount
- One module (17.4 mm) wide
- Test button
- Identification label
- AC and DC coils
- 35 mm rail (EN 50022) mount

22.23

	Double phase switch 1NO + 1 NC (SPST-NO+SPST-NC) 35 mm rail mount	- Double phase switch 2 NC (DPST-NC) - 35 mm rail mount
	$1 \mathrm{NO}+1 \mathrm{NC}(S P S T-N O+S P S T-N C)$	2 NC (DPST-NC)
	20/30	20/30
	250/400	250/400
	5,000	5,000
	1,000	1,000
	-	-
	20/0.3/0.12	20/0.3/0.12
	1,000 (10/10)	1,000 (10/10)
	AgSnO_{2}	AgSnO_{2}
8-12-24-48-110-120-230-240		
	12-24-48-110	12-24-48-110
	3/1.25	3/1.25
	$(0.85 \ldots 1.1) U_{N}$	$(0.85 \ldots 1.1) U_{N}$
	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.9 \ldots 1.1) U_{N}$
	$500 \cdot 10^{3}$	$500 \cdot 10^{3}$
	$50 \cdot 10^{3}$	$50 \cdot 10^{3}$
	15/8	15/8
	continuous	continuous
	4	4
	$-40 \ldots+40$	$-40 \ldots+40$
	IP 20	IP 20
CE GOST		

Contact specifications
Contact configuration

ORDERING INFORMATION
Example: a 22 series 35 mm rail mount relay with 1 NO (SPST-NO) 20 A contacts, with coil rated at 24 VDC , contact material AgSnO_{2}.

TECHNICAL DATA

CONTACT SPECIFICATIONS

Nominal rate lamps - incandescent (230V)	W	1,000
-compensated fluorescent (230V) W	360	

INSULATION

Dielectric strength - between supply and contacts V AC		3,500			
- between open contacts	\checkmark AC	2,000			
- between adjacent contacts	V AC	2,000			
OTHER DATA		22.21, 22.23		22.22, 22.24	
Bounce time: NO/NC	ms	5/10		5/10	
Power lost to the environment - without contact current	W	1.2		1.2	
- with rated current	W	3.2		5.2	
Max wire size		COIL CLAMPS		CONTACT CLAMPS	
		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	$1 \times 4 / 2 \times 2.5$	$1 \times 2.5 / 2 \times 2.5$	1x6 / 2x6	$1 \times 6 / 2 \times 4$
	AWG	$1 \times 12 / 2 \times 14$	$1 \times 14 / 2 \times 14$	$1 \times 10 / 2 \times 10$	$1 \times 10 / 2 \times 12$
(-7) Screw torque	Nm	0.8		0.8	

If the coil is operated for a prolonged period of time, adaquate ventilation of the relays must be provided, for example leaving a gap of about 9 mm between pairs of relays.

COIL SPECIFICATIONS

DC VERSION DATA

Nominal	Coil code	Operating range		Resistance	Consumption
U_{N}		$\mathrm{U}_{\text {min }}$	$U_{\text {max }}$	R	
V		V	V	Ω	mA
12	9.012	10.8	13.2	115	104.3
24	9.024	21.6	26.4	460	52.2
48	9.048	43.2	52.8	1,850	25.9
110	9.110	99	121	9,700	11.3

AC VERSION DATA

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	$\begin{gathered} \text { Consumption } \\ \begin{array}{l} \text { I at } U_{N} \\ (50 \mathrm{~Hz}) \end{array} \end{gathered}$
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
8	8.008	6.8	8.8	6.5	360
12	8.012	10.2	13.2	13.5	245
24	8.024	20.4	26.4	41	135
48	8.048	40.8	52.8	186	68
110	8.110	93.5	121	970	26
120	8.120	102	132	1,380	24
230	8.230	195.5	253	4,200	12.5
240	8.240	204	264	4,400	12

	26.01	26.02, 04, 06, 08	26.03
- Screw terminal connections - AC coil - Panel mount			
	- Single phase switch 1 NO (SPST-NO)	- Double phase switch 2 NO (DPST-NO)	$\begin{aligned} & -1 \text { NO + } 1 \text { NC } \\ & \text { (SPST-NO + SPST-NC) } \end{aligned}$
Contact specifications			
Number of contacts	1 NO (SPST-NO)	2 NO (DPST-NO)	1NO+1NC (SPST-NO+SPST-NC)
Rated current/Max. peak current A	10/20	10/20	10/20
Rated voltage/Max. switching voltage V AC	250/400	250/400	250/400
Rated load in ACl VA	2,500	2,500	2,500
Rated load in AC15 (230 V AC) VA	500	500	500
Nominal lamp rating:incandescent (230 V) W	800	800	800
compensated fluorescent (230 V) W	360	360	360
uncompensated fluorescent (230 V) W	500	500	500
halogen (230 V) W	800	800	800
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$	1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
Standard contact material	AgNi	AgNi	AgNi
Coil specifications			
Nominal voltage $\quad \begin{array}{r}\text { V AC }(50 \mathrm{~Hz}) \\ \end{array}$	12-24-48-110-230	12-24-48-110-230	12-24-48-110-230
	-	-	-
Rated power AC/DC VA $(50 \mathrm{~Hz}) / \mathrm{W}$	4.5/-	4.5/-	4.5/-
Operating range $\begin{array}{r}\text { AC }(50 \mathrm{~Hz}) \\ \end{array}$	$(0.8 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
	-	-	-
Technical data			
Mechanical life cycles	$300 \cdot 10^{3}$	$300 \cdot 10^{3}$	$300 \cdot 10^{3}$
Electrical life at rated load in AC1 cycles	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
Minimum/Maximum impulse duration	$0.1 \mathrm{~s} / 1 \mathrm{~h}$ (according to EN 60669)	0.1s/lh (according to EN 60669)	$0.1 \mathrm{~s} / \mathrm{lh}$ (according to EN 60669)
Insulation between coil and contacts (1.2/50 $\mathrm{\mu s}$) kV	4	4	4
Ambient temperature range ${ }^{\circ} \mathrm{C}$	$-40 \ldots+40$	$-40 \ldots+40$	$-40 \ldots+40$
Protection category	IP 20	IP 20	IP 20
Approvals (according to type):	(ϵ GOST (H)		

ORDERING INFORMATION
Example: a 26 series screw terminal mount relay with double phase switch 2 NO (DPST-NO) 10 A contacts, with coil rated at 12 V AC .

1 = Single phase switch 1 NO (SPST-NO)
2 = Double phase switch 2 NO (DPST-NO)
3 = Double phase switch $1 \mathrm{NO}+1 \mathrm{NC}$ (SPST-NO + SPST-NC)
$4=4$ sequences double phase switch 2 NO (DPST-NO)
$6=3$ sequences double phase switch 2 NO (DPST-NO)
$8=4$ sequences double phase switch 2 NO (DPST-NO)

TECHNICAL DATA

INSULATION

Dielectric strength - between supply and contacts	V AC	3,500			
- between open contacts	V AC	2,000			
- between adjacent contacts	V AC	2,000			
OTHER DATA		26.01, 26.03, 26.08		26.02, 26.04, 26.06	
Power lost to the environment with rated current and coil deenergised	W	0.9		1.8	
Max wire size		solid cable	stranded cable	solid cable	stranded cable
	mm^{2}	$1 \times 4 / 2 \times 2.5$	$1 \times 2.5 / 2 \times 2.5$	$1 \times 4 / 2 \times 2.5$	$1 \times 2.5 / 2 \times 2.5$
	AWG	$1 \times 12 / 2 \times 14$	$1 \times 14 / 2 \times 14$	$1 \times 12 / 2 \times 14$	$1 \times 14 / 2 \times 14$
(\%) Screw torque	Nm	0.8		0.8	

COIL SPECIFICATIONS

AC VERSION DATA

Nominal	Coil	Operating range		Resistance	Consumption
U_{N}		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\text {max }}$	R	$(50 \mathrm{~Hz}$)
V		V	V	Ω	mA
12	8.012	9.6	13.2	17	370
24	8.024	19.2	26.4	70	180
48	8.048	38.4	52.8	290	90
110	8.110	88	121	1,500	40
230	8.230	184	253	6,250	20

TYPE	Number of steps	SEQUENCES			
		1	2	3	4
26.01	2	y^{\prime}	4		
26.02	2	$\left.)^{\prime}\right)^{1}$	44		
26.03	2	14	$4{ }^{\prime}$		
26.04	4	$1^{1} 1^{1}$	44	14	41
26.06	3	$\left.1^{1}\right)^{1}$	14	44	
26.08	4	$\left.)^{\prime}\right)^{\prime}$	$4{ }^{\prime}$	$)^{1}{ }^{1}$	$1 / 4$

WIRING DIAGRAMS

ACCESSORIES

12-24 V DC CONTROL APPLICATIONS

Type: 026.9.012
Nominal voltage: 12 V DC
Max temperature: $+40^{\circ} \mathrm{C}$
Operating range: $(0.9 \ldots 1.1) U_{N}$
Type: 026.9.024
Nominal voltage: 24 V DC
Max temperature: $+40^{\circ} \mathrm{C}$
Operating range: $(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$

MODULE FOR ILLUMINATED PUSH-BUTTONS

Type 026.00
Sealed version, 7.5 cm insulated and flexible terminals.

Example of wiring for 24 V DC control application.

Example of wiring diagram of type $\mathbf{0 2 6 . 0 0}$
This module is necessary if using up to a maximum of 15 illuminated pushbuttons (1.5 mA max, 230 V AC) in the switching input circuit. It must be connected in parallel to the coil of the relay (see diagram).

ORDERING INFORMATION
Example: a 27 series clamp terminal mount relay with single phase switch 1 NO (SPST-NO) 10 A contacts, with coil rated at 230 V AC .

1 = Single phase switch 1 NO (SPST-NO)
$5=4$ sequences double phase switch 2 NO (DPST-NO)
$6=3$ sequences double phase switch 2 NO (DPST-NO)

TECHNICAL DATA

INSULATION

Dielectric strength - between open contacts V AC	1,000			
OTHER DATA	27.01		27.05, 27.06	
Power lost to the environment with rated current and coil deenergised	0.9		1.8	
Max wire size	solid cable	stranded cable	solid cable	stranded cable
mm^{2}	2×2.5	$1 \times 4 / 2 \times 2.5$	2×2.5	$1 \times 4 / 2 \times 2.5$
AWG	2×14	$1 \times 12 / 2 \times 14$	2×14	$1 \times 12 / 2 \times 14$
(7) Screw torque Nm	0.8		0.8	

COIL SPECIFICATIONS

AC VERSION DATA

Nominal voltage U_{N}	Coil code	Operating range		Resistance	Consumption
			$U_{\max }$	R	$\begin{aligned} & \text { I at } U_{N} \\ & (50 \mathrm{~Hz}) \end{aligned}$
V		V	V	Ω	mA
110	8.110	88	121	1,400	42.0
230	8.230	184	253	6,500	17.5

WIRING DIAGRAMS

ACCESSORIES

MODULE FOR ILLUMINATED PUSH-BUTTONS

Type 027.00
This module is necessary if using up to a maximum of 15 illuminated push-buttons (1 mA max, 230 VAC) in the switching input circuit.
It must be plugged directly into the relay.

REFERENCE STANDARDS AND VALUES

Unless expressly indicated otherwise, the products shown in this catalogue are designed and manufactured according to the requirements of the following European and International Standards:

- EN 61810-1 ed. 2, IEC 61810-7, EN 60255-23
for all-or-nothing (elementary) relays
- EN 61812-1 for timers
- EN 60669-1 and EN 60669-2-2 for electromechanical step relays
-EN 60669-1, EN 60669-2-1 and EN 60669-2-3 for electronic step relays, staircase switches and light-dependent relays
Other standards, used as reference for double insulation, are:
- VDE 0106 as basic standard
- EN 60335 (VDE 0700) for domestic appliances, prescribing 8 mm creepage and clearance between coil and contacts
- EN 50178 (VDE 0160) for industrial appliances, prescribing 5.5 mm clearance and $6.4 \ldots 8 \mathrm{~mm}$ creepage between coil and contacts
According to EN 61810-1, all technical data is specified under standard conditions of $23^{\circ} \mathrm{C}$ ambient temperature, 96 kPa pressure, 50% humidity, clean air and 50 Hz frequency. The tolerance for coil resistance, nominal absorption and rated power values is $\pm 10 \%$.

WORKING CONDITIONS

- Unless expressly indicated otherwise, all relays are suitable for 100% Duty Cycle and all the AC coil relays are suitable for 50 and 60 Hz frequency.
- Environmental conditions causing condensation or ice formation in the relay are not permitted.
- Overvoltage protection (varistor for AC , diode for DC) is recommended in parallel with the coil for nominal voltages $\geq 110 \mathrm{~V}$ for the relays of $40,41,44$ series.
- When relay coils are controlled via a proximity switch, or via cables having length > 10 m , the use of a "residual current bypass" module in parallel with the coil is recommended.

GUIDELINES FOR AUTOMATIC FLOW SOLDER PROCESSES

In general, an automatic flow solder process consists of the following stages:

RELAY MOUNTING - Ensure that the relay terminals are straight and enter the PC board perpendicular to the PC board. For each relay, the catalogue illustrates the necessary PC board pattern (copper side view).

FLUX APPLICATION - This is a particularly delicate process. If the relay is not sealed, flux may penetrate the relay due to capillary forces, changing its performance and functionality.
Whether using foam or spray fluxing methods, ensure that flux is applied sparingly and evenly and does not flood through to the component side of the PC board.
By following the above precautions, and assuming the use of alcohol or water based fluxes, it is possible to satisfactorily use relays with protection category RT II.

PREHEATING - Set the preheat time and heat to just achieve the effective evaporation of the flux, taking care not to exceed a component side temperature of $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.

SOLDERING - Set the height of the molten solder wave such that the PC board is not flooded with solder. Ensure the solder temperature and time are kept to $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right)$ and 3 seconds maximum.

CLEANING - The use of modern "no-clean" flux avoids the necessity of washing the PC board. In special cases where the PC board must be washed the use of wash-tight relays (option xxx - RT III) is strongly recommended. After cleaning it is suggested to break the pin on the relay cover. This is necessary to guarantee the electrical life at maximum load as quoted in the catalogue - otherwise ozone inside the relay will reduce the electrical life property to the switching frequency. Even so, avoid washing the relay itself, particularly with aggressive solvents or in cycles using low temperature water, as this may cause thermal shock to the PC board components.

TERMINOLOGY \& DEFINITIONS

All the following terms indicated in the catalogue are commonly used in technical language. However, occasionally, National European or International Standards may prescribe the use of different terms, in which case this will be mentioned in the appropriate descriptions that follow.

CONTACT SPECIFICATIONS

CONTACT CONFIGURATION:

Symbol	Configuration	EU	D	GB	USA
I	Make contact (Normally Open)	NO	S	A	SPST-NO DPST-NO nPST-NO
4	Break contact (Normally Closed)	NC	Ö	B	SPST-NC DPST-NC 4^{\prime}
ChangT-NC					

$\mathrm{n}=$ number of poles $(3,4, \ldots)$

TERMINAL MARKING

The European Standard EN 50005 recommends the following numbering for the marking of relay terminals:

- . 1 for common contact terminals (e.g. 11, 21, 31...)
- . 2 for NC contact terminals (e.g. 12, 22, 32...)
- . 4 for NO contact terminals (e.g. 14, 24,34...)
- A1 and A2 for coil terminals

For delayed contacts of timers the numbering will be:
.5 for common contact terminals (e.g. 15, 25,...)
-. 6 for NC contact terminals (e.g. 16, 26, ...)

- . 8 for NO contact terminals (e.g. 18, 28,...)

IEC 67 and American standards prescribe:

- progressive numbering for terminals ($1,2,3, \ldots . .13,14, .$.
- sometimes A and B for coil terminals.

RATED CURRENT - The limiting continuous current, is the highest current that a contact can continuously carry within the prescribed temperature limits. It also coincides with the limiting cycling capacity, i.e. the maximum current that a contact is capable of making and breaking under specified conditions.

MAXIMUM PEAK CURRENT - The highest value of inrush current $\leq \leq 0.5$ seconds) that a contact can make and cycle (duty cycle ≤ 0.1) without undergoing any permanent degradation of its characteristics due to generated heat. It also coincides with the limiting making capacity.

MAXIMUM BLOCKING VOLTAGE (Solid State Relay) - The maximum level of output voltage at which the output circuit will not be destroyed.

RATED VOLTAGE - The line-to-neutral voltage (derived from nominal voltages of contact loads) used for insulation co-ordination.

MAXIMUM SWITCHING VOLTAGE - The highest voltage level (including tolerances) that the contacts are able to switch according to rated voltage.

RATED LOAD IN AC1 - The maximum AC resistive switching power (in VA) that a contact can make, carry and break repeatedly, according to utilisation category AC1, EN 60947-4-1 (see Table 1). It is the product of rated current and rated voltage. It is used as the reference load for electrical life tests.

RATED LOAD IN AC15 - The maximum AC inductive switching power (in VA) that a contact can make, carry and break repeatedly, according to utilisation category AC15, EN 60947-5-1 (see Table 1).
n. 14 * The figures are given in kW; the horsepower rating can be calculated by multiplying that value by 1.34 (ie. $0.37 \mathrm{~kW}=0.5 \mathrm{HP}$). If reversing motor direction, always allow an intermediate break $>300 \mathrm{~ms}$, otherwise an excessive inrush peak current (caused from change of polarity of motor capacitor) may occur, causing contact welding.

RATED LAMPS LOAD - Maximum incandescent and fluorescent lamp ratings for 230 V AC supply voltage. Fluorescent lamps compensated to $\cos \varphi \geq 0.9$.

BREAKING CAPACITY IN DCI - The maximum value of DC resistive current that contacts can switch, depending on the value of the load voltage (see table 1).

MINIMUM SWITCHING LOAD - The minimum values of power, voltage and current that a contact can reliably switch. For example, if minimum values are $300 \mathrm{~mW}, 5 \mathrm{~V} / 5 \mathrm{~mA}$:
with 5 V the current must be at least 60 mA ;
with 24 V the current must be at least 12.5 mA ;
with 5 mA the voltage must be at least 60 V .
For gold contact variants, loads no less than $50 \mathrm{~mW}, 5 \mathrm{~V} / 2 \mathrm{~mA}$ are suggested.
With 2 gold contacts in parallel, it is possible to switch $1 \mathrm{~mW}, 0.1 \mathrm{~V} / 1 \mathrm{~mA}$.
ELECTRICAL LIFE TEST - An AC resistive load test (ACl category) conducted with relay coil (both AC and DC) supplied at rated voltage. Load applied between all movable and NO contacts but without any load on the NC contacts, and vice-versa. These load life values are valid for relays with standard contact material.
Switching frequency:
All-or-nothing relays: coil 900 cycles/h - contact 900 cycles/h (2s ON - 2s OFF, 1s ON - 3s OFF
for rated current > 16 A)
Step relays: coil 900 cycles $/ \mathrm{h}$ - contact 450 cycles $/ \mathrm{h}(4 \mathrm{~s} \mathrm{ON}-4 \mathrm{~s}$ OFF).
LOAD REDUCTION FACTOR VERSUS COS φ - For AC inductive loads (such as solenoids, contactors coils, etc.) the reduction factor corresponding to $\cos \varphi$ shall be multiplied by the rated current in order to define the maximum allowed current It is not valid for electric motors or fluorescent lamps.

TABLE 1
Utilisation categories according to EN60947-4-1 and EN 60947-5-1

Load Category	Supply type	Application
AC 1	AC single-phase AC three-phase	Resistive or slightly Inductive AC loads.
AC 3	AC three-phase	Starting and stopping of Squirrel-cage motors. Reversing direction of rotation only after stopping motor.
AC 4	AC three-phase	Starting, Stopping and Reversing direction of rotation of Squirrel cage motors. Jogging (Inching). Regenerative braking (Plugging).
DC 1 AC 14	AC single-phase	Resistive loads or slightly inductive DC loads. Control of small electromagnetic loads (<72 VA), power contactors, magnetic solenoid valves, and electromagnets.
AC 15	AC single-phase	Control of small electromagnetic loads (>72 VA), power contactors, magnetic solenoid valves, and electromagnets.
DC 13	DC	Control of electromagnetic loads, power contactors, magnetic solenoid valves, and electromagnets

*The switching voltage at the same current can be doubled by wiring 2 contacts in series.

CONTACT RESISTANCE - Measured, according to contact category (Table 2), at the external terminals of the relay. It is a statistical value, not reproducible. It hasn't any effect on relay reliability on most application. The typical value, measured with 24 V 100 mA , is $50 \mathrm{~m} \Omega$.

TABLE 2 - Contact categories according to EN60255-23

The effectiveness with which a relay contact can make an electrical circuit depends on several factors, such as the material used for the contact, its' exposure to environmental pollution and its' design etc.. Therefore, for reliable operation, it is necessary to specify a contact Application Category that will define a particular relay's switching capability in terms of maximum and minimum limits for contact voltage and current. The appropriate Application Category will also define the voltage and current levels used to measure the contact resistance. All Finder relays are category 3 , with the exception of 30 series, which is category 2.

Application category	Voltage (V)	Current (A)	Contact Resistance Measurement (IEC 61810-7)	
0	$\mathrm{U}<0.03$	$1<0.01$	$>30 \mathrm{mV}$	10 mA
1	$0.03<\mathrm{U}<60$	$0.01<\mathrm{I}<0.1$	100 mV	10 mA
2	$5<\mathrm{U}<250$	$0.1<\mathrm{I}<1$	24 V	100 mA
$\mathbf{3}$	$\mathbf{5}<\mathrm{U}<\mathbf{6 0 0}$	$\mathbf{0 . 1}<\mathrm{I}<\mathbf{1 0 0}$	$\mathbf{2 4 ~ V}$	$\mathbf{1 0 0 0} \mathrm{mA}$

TABLE 3 - Contact materials characteristics

Material	Property	Typical application*
$\begin{aligned} & \hline \mathrm{AgNi}+\mathrm{Au} \\ & \text { (Silver Nickel } \\ & \text { Gold plated) } \end{aligned}$	- Silver-nickel base with a galvanic hard gold plating of $5 \mu \mathrm{~m}$ typical thickness - Gold is not attacked by industrial atmospheres - With small loads, contact resistance is lower and more consistent compared to other materials NOTE: $5 \mu \mathrm{~m}$ hard gold plating is completely different from $0.2 \mu \mathrm{~m}$ gold flashing, which allows only protection in storing, but no better performance in use.	Wide range applications: - Small load range (where gold plating erodes very little) from up to $1.5 \mathrm{~W} / 24 \mathrm{~V}$ (resistive load). - Middle load range where gold plating erodes after several operations and the property of basic AgNi becomes dominant. NOTE: for awitching lower load, typically 1 mW ($0.1 \mathrm{~V}-1 \mathrm{~mA}$), (for example in measuring instruments), it is recommended to connect 2 contacts in parallel.
AgNi (Silver Nickel)	- Standard contact material for most relay applications - High wear resistance - Medium resistance to welding	- Resistive and slightly inductive loads - Rated current up to 12 A - Inrush current up to 25 A
AgCdO (Silver Cadmium Oxide)	- High wear resistance with higher AC loads - Good resistance to welding	- Inductive and motor loads - Rated current up to 30 A - Inrush current up to 50 A
AgSnO_{2} (Silver Tin Oxide)	- Excellent resistance to welding - Low material transfer in DC loads	- Lamp and capacitive loads - Very high Inrush current (up to 120 A) loads

*It is necessary to refer to the maximum current values specified in the catalogue for each relay.

COIL (or INPUT or SUPPLY) SPECIFICATIONS

NOMINAL VOLTAGE - The nominal value of coil (or input or supply) voltage for which the relay has been designed, and for which operation is intended. The operating and use characteristics are referred to the rated voltage.

RATED POWER - The DC power value (W) or the apparent AC power value (VA with closed armature) which is absorbed by the coil at $23^{\circ} \mathrm{C}$ and at rated voltage. It is a short-time value (not steady-state).

OPERATING RANGE - The range of input voltage, in nominal voltage applications, in which the relay works in the whole range of ambient temperatures, according to operating class:

- class 1: (0.8...1.1) U_{N}
- class 2: $(0.85 \ldots 1.1) U_{N}$

In application where the coil voltage doesn't meet the tolerances of nominal voltage, the diagrams " R " shows the relation of maximum coil voltage permitted and pick-up voltage (without pre-energisation) versus ambient temperature.

ENERGIZATION VOLTAGE

0	non operate voltage	min pick-up voltage	nominal voltage	maximum voltage
not operating range	uncertain operating zone	operating range		

DE-ENERGIZATION VOLTAGE

$\left.$| 0 | must
 drop-out
 voltage | holding
 voltage | nominal
 voltage |
| :--- | :--- | :--- | :--- | | maximum |
| ---: |
| voltage | \right\rvert\,

NON-OPERATE VOLTAGE - The value of input voltage at which the relay will not operate (not specified in the catalogue).

MINIMUM PICK-UP VOLTAGE (Operate voltage) - The lowest value of applied voltage at which the relay will operate.

MAXIMUM VOLTAGE - The highest applied voltage that the relay can continuously withstand, dependent on ambient temperature (see " R " diagrams).

HOLDING VOLTAGE (Non-release voltage) - The lowest value of coil voltage at which the relay (which has previously been energised with a voltage within the operating range) will not drop-out.

MUST DROP-OUT VOLTAGE (Release voltage) - The value of coil voltage at which the relay (which had previously been energised with a voltage within the operating range) will definitely drop-out.

RESISTANCE - The average value of the coil resistance under the standard prescribed condition of $23^{\circ} \mathrm{C}$ ambient.

RATED COIL CONSUMPTION - The average value of coil current, when energised at nominal voltage.

CONTROL CURRENT (Solid State Relays) - The nominal value of curent consumption of the input circuit, when supplied at nominal voltage.

THERMAL TESTS - Calculation of the coil temperature rise (ΔT) is made by measuring the coil resistance in a controlled temperature oven (not ventilated) until a stable value is reached (no less than 0.5 K variation in 10 minutes).
That is: $\Delta T=(R 2-R 1) / R 1 \times(234.5+t 1)-(t 2-t 1)$
where: $\mathrm{R} 1=$ initial resistance $\quad \mathrm{R} 2$ = final resistance $\dagger 1=$ initial temperature $\quad \mathrm{t} 2=$ final temperature

INSULATION DATA

INSULATION COORDINATION

(according to EN 61810-1 ed. 2 and IEC 60664-1)
In accordance with to EN 61810-1 ed. 2 , the Insulation characteristics achieved by the relay can be described by just two characteristic parameters - the Rated Impulse Voltage and the Degree of Pollution.

To ensure the correct Insulation Coordination between the relay and the application, the equipment designer (relay user) should establish the Rated Impulse Withstand Voltage appropriate to his application, and the Pollution level for the micro environment in which the relay is situated. He should then match (or coordinate) these two figures with the corresponding values given in the appropriate relay data.

To establish the appropriate Pollution degree and Rated impulse withstand voltage refer either to an appropriate Product Standard (which may be mandatory for the particular type of equipment), or consider the tables below. Select the Rated impulse withstand voltage from a knowledge of the Nominal Voltage of the Supply and a knowledge of the Over Voltage Category (as described in IEC 60664-1).

Nominal voltage of the supply system (mains) according to IEC 600038		Voltage line-to neutral (derived from nominal voltages AC or DC, up to and including)	Rated impulse withstand voltage			
V		\checkmark	V			
			Overvoltage category			
Three-phase	Single-phase		I	11	III	IV
	120 to 240	150	800	1500	2500	4000
230/400*		250*	1200*	2200*	3600*	5500*
230/400	277/480	300	1500	2500	4000	6000

* For existing products the interpolated values apply.

Pollution degree	Immediate surroundings conditions $\mathbf{1}$No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
$\mathbf{2}$	Only non-conductive pollution occurs, except that occasionally a temporary conductivity caused by condensation is to be expected.
$\mathbf{3}$	Conductive pollution occurs or dry, non-conductive pollution occurs which becomes conductive due to condensation which is to be expected.
$\mathbf{4}$	The pollution generates persistent conductivity caused by conductive dust or by rain or snow.

Dependent on the product standard, pollution degree 2 and 3 are commonly prescribed for equipment. For example, EN 50178 (electronic for use in power installations) prescribes, under normal circumstances, contamination level 2.

Examples of specification of Rated Impulse Voltage and the Degree of Pollution:
$4 \mathrm{kV} / 3$ (This relay is designed to withstand a rated impulse voltage of 4 kV and pollution degree 3).
4-2.5 kV/3 (This relay is designed to withstand rated impulse voltages of 4 kV and 2.5 kV and pollution degree 3).

If only one rated impulse voltage is given, the value refers to all electrical circuits against each other and against the accessible surfaces. If two values are indicated for the rated impulse voltage, the first value refers to the contacts against each other and against the accessible surfaces as well as other electrical circuits. The second value refers to the coil against accessible surfaces and other electrical circuits.

DIELECTRIC STRENGTH - It can be described in terms of an alternating voltage or in terms of a surge (1.2/50 μ s impulse) voltage. The correspondence between the alternating voltage and surge voltage is listed in IEC 60664-1 Annex A, Table A. 1.
For all Finder relays a 100% test is carried out with a 50 Hz , alternating voltage applied between all contacts and coil, between adjacent contacts and between open contacts. The leakage current must be less than 3 mA . Type tests are carried out with both alternating voltage and with impulse voltage.

DIELECTRIC STRENGTH BETWEEN OPEN CONTACTS - It far exceeds the maximum switching voltage. Typical contact gaps of $0.3 \sim 0.5 \mathrm{~mm}$ result in ultimate dielectric strength values of typically $1300 \sim 1550 \mathrm{~V}$ (1.2/50 μ s impulse), but always refer to the relay specification.

INSULATION GROUP - The latest way of specifying insulation properties according to the Insulation Coordination replaces the insulation group classification, such as C 250 according to the older VDE 0110 standard.

SAFE SEPARATION / DOUBLE INSULATION - Isolation Co-ordination as described earlier ensures the isolation of hazardous voltages from other circuits to a safe engineering level. But importantly, not on the basis that there is any intentional direct personal access to the isolated circuits or, where failure of insulation would present a particularly high risk. (Telecoms and medical applications, are good examples).

For high risk / high integrity applications there is a need for a very special and higher level of physical isolation and integrity between circuits, and this is provided by safe separation and double insulation. The regulations for safe separation establish the conditions which must be met for PELV (protected extra low voltage) or SELV (safety extra low voltage) circuits.

Consider the common case, where the mains voltage of 230 V and a low voltage circuit both appear within a relay; all the following requirements for the relay, including its connections and wiring, must in consequentce be met.

The low voltage and the 230 V must be separated by double or reinforced insulation. This means that between the two electrical circuits must be guaranteed a dielectric strength of $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$, an air distance of 5.5 mm and, depending on the pollution degree and on material used, an appropriate tracking distance.
The electrical circuits within the relay must be protected against any possibility of bridging caused, for instance, by a lose metal part. This is achieved by the physical separation of circuits into isolated chambers within the relay.
The wires connected to the relay must also be physically separated from each other. This normally is achieved using separate cable channels.
For relays mounted on printed circuit boards the appropriate distance between the tracks connected to low voltage and the tracks connected to other voltages must be achieved.

Although this appears quite complex, with the SELV insulation options offered on some Finder relays, the user only needs to address the two last points. And with the coil and contact connections on opposite sides of the relays and sockets, the separation of connections into different cable channels is greatly facilitated.

GENERAL TECHNICAL DATA

CYCLE - Operate and subsequent release of a relay. Over a cycle the coil is energised and de-energised and the contact will progress from the point at which it makes a circuit, through to breaking the circuit, to the point at which it re-makes the circuit.

PERIOD - The time covering one cycle.

DUTY FACTOR (DF) - During cyclic operation, DF is the ratio between the energised time and one period. For continuous duty, $D F=1$.

MECHANICAL LIFE - This test is performed by energising the coils of several relays at 8 cycles per second without any load applied to the contacts. It establishes the ultimate durability of the relay where electrical wear of the contacts is not an issue. The maximum Electrical Life may therefore approach the Mechanical Life where the electrical loading of the contacts is very small.

ELECTRICAL LIFE - See in CONTACT SPECIFICATIONS.

OPERATE TIME - The typical value of the NO contact closing time with the coil energised at rated voltage. It doesn't include the bounce time (see following pattern).

RELEASE TIME -

- For CO relays: the typical value of the NC contact closing time with the coil de-energized. It doesn't include the bounce time.
- For NO relays: the typical value of the NO contact opening time with the coil de-energized.
Note: It will increase if protection (diode or led+diode) modules are connected in parallel to the coil.

BOUNCE TIME - The typical value of duration of bounces, for NO or NC contacts.

INSULATION COORDINATION according to EN 61810-1
See in INSULATION DATA.

DIELECTRIC STRENGTH BETWEEN OPEN CONTACTS -

See in INSULATION DATA.

AMBIENT TEMPERATURE RANGE - The range of temperatures of the immediate area where the relay is located, and for which operation of the relay is guaranteed (under prescribed conditions).

ENVIRONMENTAL PROTECTION according to IEC 61810-7 - The relay technology categories describe the degree of sealing of the relay case:

Relay technology category	Condition
RT O Unenclosed relay	Relay not provided with a protective case.
RT I \quad Dust protected relay	Relay provided with a case which protects its mechanism from dust.
RT II Flux proof relay	Relay capable of being automatically soldered without allowing the migration of solder fluxes beyond the intended areas.
RT III Wash tight relay	Relay capable of being automatically soldered and subsequently undergoing a washing process to remove flux residues without allowing the ingress of flux or washing solvents.
RT IV Sealed relay	Relay provided with a case which has no venting to the outside atmosphere
RT V	Hermetically sealed relay
Sealed relay having an enhanced level of sealing.	

PROTECTION CATEGORY OF ENCLOSURES - according to EN 60529. The first digit is related to the protection against ingress of solid foreign objects into the relay, and also against access to hazardous parts. The second digit relates to the protection against ingress of water. The IP grade is related to normal use, in relay sockets or PC boards. For sockets, IP20 means that the socket is "finger-safe" (VDEO106).
Examples:
IP $00=$ Not protected.
IP $20=$ Protected against solid foreign objects of $12.5 \mathrm{~mm} \varnothing$ and greater. Not protected against water.
IP $40=$ Protected against solid foreign objects of $1 \mathrm{~mm} \varnothing$ and greater. Not protected against water.
IP $50=$ Protected against powder (ingress of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the relay). Not protected against water.
IP 67 = Totally protected against powder (dust-tight) and protected against the effect of temporary immersion in water.

VIBRATION RESISTANCE - The maximum acceleration value (measured in $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$) for frequencies in the range $10-55 \mathrm{~Hz}$ which can be applied to the relay in any of the 3 axis, without the opening for more than 10μ s of the NO contact (if the coil is energised) or NC contact (if the coil is not energised). In the energised state, the resistance is usually higher than in non-energised state.

POWER LOST TO THE ENVIRONMENT - The value of the power lost from the relay in working conditions (without contact load or at full load) and may be used in the thermal design of panels.

MOUNTING POSITION - If not expressly indicated, any mounting position of the relay is permitted.

RECOMMENDED DISTANCE BETWEEN RELAYS MOUNTED ON PC.Boards -
This is the minimum mounting distance suggested when several relays are mounted on the same PC board. Care shall also be taken that other components mounted on the PC board do not heat the relays.

TORQUE - The maximum value of torque that can be used for tightening terminal screws, according to EN 60999, is 0.4 Nm for $\mathrm{M} 2,5$ screws, 0.5 Nm for M 3 screws, 0.8 Nm for $\mathrm{M} 3,5$ screws, 1.2 Nm for M 4 screws. The test torque is indicated in the catalogue.. Normally a 20% increase of this value is acceptable.
\square Both slot-head and cross-head screwdrivers can be used.
MAX WIRE SIZE - Maximum cross-section of cables (solid or stranded wire, without ferrules) that can be connected to each terminal. For use with ferrules, the wire cross-section has to be reduced (e.g. from 4 to $2.5 \mathrm{~mm}^{2}$, from 2.5 to $1.5 \mathrm{~mm}^{2}$, from 1.5 to $1 \mathrm{~mm}^{2}$).
For any terminals, a minimum cross-section of $0.2 \mathrm{~mm}^{2}$ is allowed. According to EN 60204-1, it is permitted to introduce 2 or more wires
into the same terminal. All Finder products are designed in such a way that each terminal can accept 2 or more wires.

SPECIFIED TIME RANGE - Range in which it is possible to set timing using the time scales.

REPEATABILITY - The difference between the upper and lower limits of a range of values taken from several time measurements of a specified time relay under identical stated conditions. Usually repeatability is indicated as a percentage of the mean value of all measured values.

RECOVERY TIME - The time necessary to start the relay again with the defined accuracy after the input energising quantity has been removed.

MINIMUM CONTROL IMPULSE - The shortest duration of a control impulse to fulfil and complete the time function.

SETTING ACCURACY - The difference between the measured value of the specified time and the reference value set on the scale.

THRESHOLD SETTING - For light-dependent relays this is the illumination level (measured in Lux) at which the relay will switch on or off. Pre-set levels and the corresponding range of threshold that can be set using the regulator are indicated in the catalogue.

DELAY TIME - For light-dependent relays this is the delay between the change of state in the electronic circuit sensitive to light variation (usually indicated by change of state of an LED) and the switching of the output relay contact

CABLE GRIP - Specifies the range of the external diameter of cables that can be reliably gripped.

TYPE - For time switches, this is the type of program (weekly or daily)

PROGRAMS - For time switches, this is the number of different types of programs that can be stored.

MINIMUM INTERVAL SETTING - For time switches, this it is the minimum time interval that can be programmed.

BACK-UP POWER - The time when the switch won't loose neither the programs nor the time.

MAXIMUM IMPULSE DURATION - For step relays and staircase switches, this is the maximum command pulse duration permitted.

MAX NO. OF ILLUMINATED PUSH-BUTTONS - For step relays and staircase switches, this is the maximum number of illuminated push-buttons (having current absorption < $1 \mathrm{~mA} @ 230 \mathrm{~V} \mathrm{AC}$) that can be connected without causing problems. If the push-button consumption is higher than 1 mA , the maximum number of push-buttons allowed is proportionally reduced (ie. 15 push-buttons $\times 1 \mathrm{~mA}$ is equivalent to 10 push-buttons $\times 1.5 \mathrm{~mA}$).

DETECTION LEVEL - For monitoring relays, this represents, either fixed or adjustable level(s) of voltage, current or phase asymmetry which define the acceptable limits of operation. Values outside acceptable limits will cause the output relay NO contact to open (after any intentional delay).

SWITCH ON (OFF) DELAY: For monitoring relays, these are intetional (fixed or adjustable) times to either delay the re-energisation, or delay the de-energisation of the output relay.

REACTION TIME: For monitoring relays, this is the maximum time taken by the electronics to respond to changes in the monitored value.

FAULTY MEMORY: For monitoring relays - selecting this function will inhibit the automatic reset following fault detection. Reset can only be made by positive intervention.

SWITCH-ON HYSTERESIS: For monitoring relays type 71.41 and 71.51 , switch-on and swtch-off about the detection level can be separated by a (Hystereis) percentage - selected during relay set-up. (see function diagram).

ELECTRODE VOLTAGE: For level control relays, this is the nominal voltage between. Note: this voltage in alternating in order to avoid the electrolysis effects.

ELECTRODE CURRENT: For level control relays, this is the nominal electrode current

MAX SENSIVITY RANGE: For level control relays: the maximum sensitivity is the maximum resistance between the electrodes that will be recognised as indicating the presence of liquid. This may be fixed or adjustable over a range.

EMC (ElectroMagnetic Compatibility) SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD
ELECTROSTATIC DISCHARGE	EN 61000-4-2
RADIO-FREQUENCY ELECTROMAGNETIC	
FIELD $(80 \div 1000 \mathrm{MHz})$	EN 61000-4-3
FAST TRANSIENTS $(\mathrm{burst})(5-50 \mathrm{~ns}, 5 \mathrm{kHz})$	EN 61000-4-4
SURGES $(1.2 / 50 \mu \mathrm{~s})$	EN 61000-4-5
RADIO-FREQUENCY COMMON MODE	
DISTURBANCES $(0.15 \div 80 \mathrm{MHz})$	EN 61000-4-6
POWER-FREQUENCY MAGNETIC FIELD $(50 \mathrm{~Hz})$	EN 61000-4-8
RADIATED AND CONDUCTED EMISSION	EN 55011 / 55014 /

In panel installations, the most frequent and, particularly, more dangerous type of electrical disturbances are the following:

1. Burst (fast transients). These are packets of $\mathbf{5 / 5 0} \mathbf{n s}$ pulses, having high peak voltage level but low energy since individual pulses are very short - 5 ns rise time (5×10^{9} seconds) and 50 ns fall time They simulate the disturbances that can spread along the cables as a consequence of commutation transients from relays, contactors or motors. Usually they are not destructive, but they can affect the correct working of electronic devices.

2. Surge (voltage pulses). These are single $1.2 / 50 \mu \mathrm{~s}$ pulses, with energy much higher than bursts since the duration is considerably longer -1.2μ s rise time (1.2×10^{6} seconds) and $50 \mu \mathrm{~s}$ fall time. For this reason they are very often destructive. The Surge test typically simulates disturbances caused by the propagation of atmospheric electrical storm discharges along electrical lines, but offen the switching of power contacts (such as the opening of highly inductive loads) can cause disturbances that are very similar, and equally destructive.

The test levels \mathbf{V} (peak values of the single pulses) are prescribed in appropriate product standards:

- EN 61812-1 for electronic timers;
- EN 60669-2-1 for electronic relays and switches;
- EN 50082-2 (generic standard for immunity in the industrial environment) for other electronic products for industrial application; - EN 50082-1 (generic standard for immunity in the domestic environment) for other electronic products for domestic application;
Finder electronic products are in accordance with European EMC Directives 89/336/EEC and $93 / 68 / E E C$ and indeed, have immunity capabilities often higher than the levels prescribed in the above mentioned standards. Nevertheless, it is not impossible that some working environments may impose levels of disturbances far in excess of the guaranteed levels, such that the product could be immediately destroyed! It is therefore necessary to consider Finder products as not being indestructible under all circumstances. The user should pay attention to the disturbances in electrical systems and reduce as much as possible these disturbances. For example, employ arc suppression circuits on the contacts of switches, relays or contactors which otherwise might produce over-voltages when opening electrical circuits (particularly highly inductive or DC loads). Attention should also be paid to the placement of components and cables in such a way as to limit disturbances and their propagation.

EMC rules - Require that it is the equipment designer who must ensure that the emissions from panels or equipment does no exceed the limits stated in EN 50081-1 (generic standard for emission in the domestic environment) or 50081-2 (generic standard for emission in the industrial environment) or any product specific harmonised EMC standard.

Voltage-current characteristic when switching an ohmic load (fig. 1).

Voltage-current characteristic when switching a relay coil (fig. 2).

Switching Relay Coils.

When switching a resistive load, the current follows the phase of the voltage directly (Fig 1).

When switching relay coils the current and voltage waveforms are different due to the inductive nature of the coil (Fig 2). A brief explanation of this mechanism is as follows.

On energisating the coil, the build up of the magnetic field gives rise to counter electromotive forces which in turn delay the rise in coil current. On de-energisation, the sudden interruption of the coil current causes a sudden collapse of the magnetic field, which in turn induces a high voltage of reverse polarity across the coil. This reverse polarity voltage peak can reach a value typically 15 times higher than the supply voltage, and as a consequence can disturb or destroy electronic devices.

To counteract this potentially damaging effect, relays coils can be suppressed with a Diode, a Varistor (voltage dependent resistor) or a RC (resistor/capacitor) module - dependent on the operating voltage. (See below for descriptions of the various Modules available.)

Whilst the above description is based on the working of a DC coil, the reverse polarity voltage peak on de-energisation applies similarly to AC coils. However, when energising AC coils there will also be a coil inrush current of 1.3 to 1.7 times the nominal coil current - dependent on coil size. If coils are fed via a transformer (and particularly if several are energised at the same time) then this may need to taken into account when calculating the VA rating of the transformer.

Functions

GREEN LED +DIODE MODULE (STANDARD POLARITY)

Recovery diode modules + LED are used for DC only. The reverse voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A1).
The release time increases by an approximate factor of 3 .
If an increase of the release time is undesirable use a Varistor or RC module.
The LED indicator lights up when the coil is energized.

GREEN LED +DIODE MODULE (NON STANDARD POLARITY)

Recovery diode modules + LED are used for DC only. The reverse voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A2).
The release time increases by an approximate factor of 3 .
If an increase of the release time is undesirable use a Varistor or RC module.
The LED indicator lights up when the coil is energized.

GREEN LED + VARISTOR

LED modules + Varistor are used for both AC and DC coils.
The reverse voltage peaks of the relay coil are limited by the Varistor to approximately 2.5 times the nominal voltage of the supply. When using DC coils it is essential that positive is connected to terminal A1. The relay release time increases insignificantly.

GREEN LED

LED modules are used for $A C$ and $D C$.
The LED indicator lights up when the coil is energized.
When using DC it is essential that positive is connected to terminal A1.

DIODE MODULE (STANDARD POLARITY)

Recovery diode modules are used for DC only. The reverse voltage
peaks of the coil are short circuited by the recovery diode (positive to terminal A1).
The release time increases by an approximate factor of 3 .
If an increase of the release time is undesirable use a Varistor or RC module.

DIODE MODULE (NON STANDARD POLARITY)

Recovery diode modules are used for DC only. The reverse voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A2). The release time increases by an approximate factor of 3 .
If an increase of the release time is undesirable use a Varistor or RC module.

RC MODULE

RC circuit modules are used for AC and DC coils. The reverse voltage peaks of the coil are limited by the RC module to approximately 2.5 times the nominal voltage of the supply. The relay release time increases insignificantly.

RESIDUAL CURRENT BYPASS MODULE

Bypass modules are advisable if 110 or 230 v AC relays show any tendency to fail to release. Failure to release can be caused by residual currents from AC proximity switches or inductive coupling caused through long parallel lying $A C$ control lines.

\qquad

\qquad
\qquad

 \rightarrow
\qquad

FINDER SpA
Via Drubiaglio, 14
10040 ALMESE (TO) - ITALY
Tel. $+39 / 011.9346211$
Fax $+39 / 011.9359079$

Export@findernet.com

FINDER FRANCE Sarl Avenue d'Italie - BP 40 Zone Ind. du Pré de la Garde F - 73302 ST. JEAN DE MAURIENNE Cédex Tel. +33/479/83 2727 Fax $+33 / 479 / 598004$ Finder.FR@finder.fr	FINDER GmbH Eisenstrasse 30 D - 65428 RÜSSELSHEIM Tel. $+49 / 6142 / 8770$ Fax $+49 / 6142 / 87777$ Finder.DE@findernet.com	FINDER ELECTRICA Pol. Ind. La Pobla L’Eliana, s/n. Parcela № 4 E - 46185 La Pobla de Vallbona (VALENCIA) Dirección Postal Aptdo 234 Tel. +34-96 2725295 Fax +34-96 2750250 Finder.ES@findernet.com
S.P.R.L. FINDER BELGIUM B.V.B.A. Bloemendael, 5 B - 1547 BEVER Tel. $+32 / 54 / 300868$ Fax $+32 / 54 / 300867$ Finder.BE@findernet.com	FINDER RELAIS NEDERLAND B.V. Dukdalfweg 51 NL - 1041 BC AMSTERDAM Tel. $+31 / 20 / 6156557$ Fax $+31 / 20 / 6178992$ Finder.NL@findernet.com	FINDER PORTUGAL, LDA R. Antero de Quental Edifício Hermes No 221 R/C Sala 17 P - 4455-586-PERAFITA Tel. $+351 / 229942900-1$ Fax $+351 / 229942902$ Finder.PT@findernet.com
FINDER PLC Opal Way - Stone Business Park STONE, STAFFORDSHIRE, STI 5 OSS - UK Tel. $+44 / 1785 / 818100$ Fax +44/1785/815500 Finder.UK@findernet.com	FINDER RELAIS VERTRIEBS GmbH Aspangbahnstraße 2 A - 2361 LAXENBURG Tel. $+43 / 2236 / 864136$ - 0 Fax $+43 / 2236 / 86413636$ Finder.AT@findernet.com	FINDER RELAYS, INC. 4465 Commerce Drive, Suite: 103 Buford, GA 30518 - U.S.A. Tel. +1/770/271-4431 Fax $+1 / 770 / 271-7530$ Finder.US@findernet.com
FINDER AB Stationsvägen, 1 SE - 43525 MÖLNLYCKE Tel. $+46 / 31 / 880099$ Fax +46/31/88 0604 Finder.SE@findernet.com	FINDER CZ, s.r.o. Hostivařská 6/92 CZ - 10200 PRAHA 10 Tel. +420/2 86889504 Fax +420/2 86889505 Finder.CZ@findernet.com	FINDER COMPONENTES LTDA. Rua Olavo Bilac, 315 Bairro Santo Antônio São Caetano do Sul - SÃO PAULO CEP 09530-260 - BRASIL Tel. $+55 / 11 / 42271550$ Fax $+55 / 11 / 42274313$ Finder.BR@findernet.com
FINDER (SCHWEIZ) AG Industriestrasse, 1a, Postfach 23 CH - 8157 DIELSDORF (ZH) Tel. $+41 / 1 / 8853010$ Fax $+41 / 1 / 8853020$ Finder.CH@finder-relais.ch	FINDER - Hungary Kereskedelmi Kft. 1046 BUDAPEST Kiss Ernö u. 1-3 Tel. +06/1-399-15-25 Fax +06/1-399-15-27 Finder.HU@findernet.com	

[^0]: * Operate/release time: if the relays are used with 35 mm rail sockets types 93.01 and 93.51 , refer to the technical data of 38 Series, page 98 .

[^1]: Operating range vs ambient temperature.
 1-Max coil voltage permitted.
 2 - Min pick-up voltage with coil at ambient temperature.

[^2]: Operating range vs ambient temperature.
 1 - Max coil voltage permitted.
 2 - Min pick-up voltage with coil at ambient temperature.

[^3]: Operating range (DC version) vs ambient temperature.
 1 - Max coil voltage permitted.
 2 - Min pick-up voltage with coil at ambient temperature.

[^4]: 1 - Max coil voltage permitted.
 2 - Min pick-up voltage with coil at ambient temperature.

[^5]: Operating range (AC type) vs ambient temperature.

[^6]: Type 72.11
 control by Filling
 $\mathbf{E}=$ Level control by Emptying, Z1-Z2 linked. Run-on time fixed at 1 sec .

